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l. Introduction

This report is the final report on National Aeronautics and Space
Administration Contract No. NAS8-11231 (including Modifications No. 1 and
No. 2) entitled "Study of Optimal and Adaptive Control Theory".

During the study period, which began in May 1964 and continued through
June 1966, the principal investigator conducted investigations into a variety of
theoretical questions which arise naturally in the study of modern optimal and
adaptive control techniques for large launch vehicles. The particular topics chosen
for investigation were selected through consultations with the staff of the Aero-
Astrodynamics Laboratory of the George C. Marshall Space Flight Center, Huntsville
Alabama. The principal investigator is especially grateful to Mr. Clyde Baker, Mr.
Judson Lovingood, Dr. David Ford* and Mr. Tommy Carter, of the Aero-Astrodynamics
Laboratory, for their many stimulating and informative discussions during this study.

The material in this report is arranged in chapters, with each chapter represent-
ing a self-contained exposition of a particular topic. Reference and figure citations
in the individual chapters refer only to the list of references and collection of figures
given in that particular chapter.

The subject of optimal control with a "Minimax-type" performance index received
particular attention during this study because of its' potential application in the design
of load-minimizing control systems for large launch vehicles. Some of the methods
which have previously been used to solve such problems are summarized in Chapter II.

In addition, Chapter |l contains a detailed account of an essentially "new" method
for effectively solving such problems. Application of this proposed new method is
illustrated by five examples which are worked in detail.

The study of "worst-case" optimal control problems with unknown disturbances
leads naturally to the study of variational problems with "competing controls". This
class of problems can be cast as continuous games in function spaces and was first studied
as such by R. lIsaacs in the early 1950's, A general study of this class of problems was
initiated by the principal investigator in the early period of the contract. However, the

idea of a general study was subsequently abandoned with the publication of Isaac’s

*
Now with the Department of Mathematics, Emory University.




highly original, and now well-known, 1965 treatise on this subject. Instead,
several specific examples were studied in detail by the principal investigator and
those examples are presented in Chapter IlI.

The so-called "phase-variable canonical form" for single-input linear
dynamical systems has found many applications in the area of modern linear
control theory. Two of the most interesting theoretical aspects of this topic are

the matrix theoretic structure of and computational algorithms for the required

transformation matrix. The results of studies of these two topics are described in
Chapters 1V and V.

In many practical applications of modern control theory the concept of in-
variant hypemlanes in the system state space plays an important role. For instance,
this concept forms the theoretical foundation for N.A,S.A.'s "Drift-Minimum"
control principle. In the course of the present study the principal investigator
studied the algebraic theory of invariant hyperplanes for linear dynamical systems and,
by this means, was able to show connections between that topic and the important
and related subjects of controllability and observability. These results are described
in Chapter VI.

The application of optimal conirol techniques in the design of large launch
vehicle conirol systems has centered around the well-known, and almost completely
solved, linear optimal regulator problem. During the present study, the principal
investigator considered several variations on the usual formulation of the linear optimal
regulator problem. In particular, the fixed-time regulator problem with time-invariant
feedback control and the unspecified-time regulator problem with bounded control were
studied in detail. The results obtained for these two problems are described in Chapters

VIl and VIIL,



il. Optimal Control with Chebyshev Minimax Performance lndex]

C. D. Johnson

Su mmary

The optimal control of dynamical systems with conventional Mayer, Lagrange,
and Bolza type performance indices has been studied in some detail {1] ,2 {21, [3].
In the present work the optimal control of dynamical systems with a certain minimax
type performance index, which cannot be expressed in the Mayer, Lagrange, or Bolza
format, is studied. The form of the optimal control is described and certain geometric
properties of the solution are discussed. Several examples are worked in detail to

illustrate application of the proposed method of solution.

1. Introduction

Consider the class of dynamical systems described by
%= Exot, ub) - = d/dt

where x is the system state vector and u(t) is the scalar input or control. The optimal
control of this class of dynamical systems has been studied in detail for the three parti-
cular cases in which J[u], the performance index functional to be minimized, is:

(i) a scalar function G of the initial and/or terminal state

(the Mayer type problem)
Jv] = G()‘:(ro)l 5(.[)1 fol n,

(ii) atime integral of a scalar function L evaluated along the
state trajectory between the initial and terminal states

(the Lagrange type problem)

T
Jlu] = /f‘ L()lf,(t)l U(t)l f) dt,

(¢}

1. This research was conducted ot the University of Alabama Research Institute and
was supported by the National Aeronautics and Space Administration vnder Contract
NAS8-11231 and Grant No. NsG-381. This paper was presented at the 1966 Joint
Automatic Control Conference, Seattle, Washington, August 1966 and will appear inthe
A.S.M.E. Transactions, Journal of Basic Engineering, March 1967.

2. Numbers in brackets designate References at end of paper,



(iii) asum of (i) and (ii) (the Bolza type problem)

T
Jlul = Gix(t ), x(), t , T + [ L), ult), 1) dt.

The theoretical work of Pontryagin, Bellman, LaSalle, Kalman, Berkovitz, and others
has led to the development of a relatively complete mathematical theory for this
particular class of optimal control problems .

In many practical applications, however, the actual physical performance
criterion cannot be expressed as a Mayer, Lagrange, or Bolza type performance index.
For example, in the case of regulator type control systems, the actual performance
index may be expressed as per-cent overshoot due to a step change in load with a
specified upper bound on settling time. In other practical applications the per-
formance index may be expressed as the maximum or peak value of velocity, acceler-
ation, force, torque, stress, temperature, etc., which occurs during some specified
interval of control. Performance indices of this type fall into the general category

of what we will call Chebyshev minimax performance indices in which the objective

is to minimize the maximum value attained by a scalar function C(ﬁ(’r)), evaluated
along the state trajectory, over some specified closed interval of time,

Optimal control problems with minimax performance indices of the type
described above belong to a broad class of extremal problems which have their origin
in the highly original researches of the Russian mathematician P. L. Chebyshev
[Tchebycheff]. In his 1854 studies [ 15] of mechanical linkages which generate
approximate straight line motion, Chebyshev introduced the important idea of
characterizing the quality of the approximation in terms of the maximum deviation
from the desired straight line. Those investigations led to the formulation of more
general mathematical problems of minimax approximation involving functions least

deviating from zero and ultimately led to the development of the well-known Chebyshev

3. It is remarked that the term "minimax" has also been used {in a basically different
sense) to describe a variety of confiict-type optimization problems which arise in game
theory [ 4], statistical communication theory [5], [6], and optimal control theory [ 7]~
[14]. In those problems, the performance index is usually of the conventional Mayer,
Lagrange, or Bolza type and the minimum and maximum operations are taken with
respect to the policies or control actions of two conflicting elements.



polynomials [ 16] and the more general theory of Chebyshev approximation [17], [18].
The extension of Chebyshev's minimax approximation ideas to problems in approximating
solutions to ordinary differential equations was considered in a 1907 paper by Young
[19] and more recently by Lanczos [20] and Carter [21].

In 1956, Bellman, Glicksburg, and Gross, {22] gave one of the first accounts
of the application of Chebyshev minimax performance indices to problems of optimal
control of dynamical systems. In subsequent investigations, Bellman [23], [24], [25],
Sevin [26], and Bellman, Glicksburg and Gross [27] studied a variety of particular
examples from this class of problems. Some of the more recent researches in this class
of problems are described in {28]~[35].

In this paper, we formulate a particular class of optimal contro!l problems with
Chebyshev minimax [ C-minimax] performance index and describe a method of solution
which is essentially different from those proposed in [22]-[35]. Some geometric properties
of the optimal trajectory are discussed and a practical technique for computing the optimal
control is described. Several examples are worked in detail to illustrate application of

the theory.

2. Statement of the Problem

The problem is to find, in the class of piecewise continuous functions, a scalar

control u =u(t) which minimizes the functional

ol = max  CE) M
o St<T

subject to the following conditions
% = F(x, u(1) (- = d/dh) @)

x(ty) = %o x, €D (3)

~

‘4, The case in which the independent variable t (T) appears as an explicit argument
in one or more of the functions C, F, (J) can be case into the form of (1)-(5) by
introducing an auxiliary state variable x . defined by

)'(n+] =1

Xa+1{to) =t



J(m) =0 Tt “)
u(f) eU t <t<T (5)

In (1), x = (x.l, cees x-n) is an n-vector: the system state vector, and C(x) is

the performance index: a real, single valued, scalar function of x defined throughout

a set D of the n-dimensional euclidean state space E". In 2, F is a vector function
continuous in u and continuously differentiable with respect to x e D. Equation (4)

defines the terminal manifold, J < D, an m-dimensional (m<n) hypersurface of

admissible terminal states x(T). The terminal time T is specified implicitly, by (4),

as the first time t >t which satisfies .7(35‘(1')) =0. Problems involving more explicit
restrictions on T [for example, suchas T =T* or T< T* where T* is some specified
constant] can be accommodated in this formulation by the technique described in
footnote 4 below. It is assumed that C(>‘_<_) and j(g\(’) are once continuously differentiable
and 7 is connected.

A piecewise continuous real valued function u(t) with values belonging to the
closed, convex, and bounded set U is called an admissible control. An admissible
control u =u®(t) which yields an absolute minimum of the functional (1), subject to
the restrictions (2)-(4), is called opfimc|.5 An optimal control of the form OE uo(i(t))
is an optimal control law. An integral curve of (2) corresponding to an optimal control,

is an optimal trajectory. The set D & E" is taken as the set of all states x, which are

controllable to 27, That is, for each initial state %o € D there exists a least one
admissible control u(t) such that the corresponding solution of (2) satisfies (3) and (4).

Hereafter, we assume that D is non-void and uo(i) exists for all x eD.

3. Form of the Solution

Let u®(x) be an optimal control law, and let

J[uo(i); %0 = Vi), %, €D (6)

5. It may be noted that an optimal control for the functional (1) is also optimal for every
functional of the form J[u] = néax(TM[C(x('r))] where M(C) is any monotonically
to <t ~

increasing continuous function of C. For this reason, the previously stated assumption
concerning the differentiability of the performance index can usually be realized, even
when the original function C(x) is not continuously differentiable, by proper choice of
an alternative performance index M[C(ﬁ)] .



From (1), it is clear that
Vix) > C(f’) ¥ x=x,€eD 7)

Thus, any admissible control u(t) is optimal if the corresponding solution of (2) satisfies

(3), (4) and the condition

C(’f.(*)) < C(Zfo) t <t<T 8)

On the terminal manifold (4)
V(x) = C(ﬁ) M .)‘(‘67 9

It is assumed hereafter that V(x) is continuous at each state x in the interior of D,
Let Ro=7 be the set of all states xeD with the following properties. For
each x ¢ R, an admissible control u = ¢(t; x) exists such that (8) is satisfied every-

where along the corresponding solution of (2) and, in addition

-7(35,(.[)) =0 for some T >t _ (10
z(v('r)eRo M fo_<_f_<_T an

Clearly, the set Ro is connected and closed relative to D, It is remarked that
¢(t;2_<o) is not unique, in general. Moreover, the set Ro-‘7 might be empty. Let
aRo denote the boundary of the set Ro and suppose that aRo is defined cy B(f) =1,
x eD. Suppose also that ZB(f) exists at x and let 2(1(') be the outward pointing
normal to the boundary aRo. Thus, v(x) = £ YB(x) depending on the choice of B(x).
I8 Ul(fi) < U is the particular open set of admissible values of the control u defined
by®

U'G) ={ufuel; <9, Flx, ) <0}, xedR, (12)

then it follows from the definition of Ro that states xe€ BRO < D, which do not lie

6. {x,y) denotes the inner product of x and y.

-~



on the terminal manifold (4), have the following properties wherever !(’.(.) exisfs:7
(i) 1f the set U'(x) is not empty then

inf (ZC(x), E(x, u)) =0 x e R, (13)
U eU'(i) - ~ ~
(ii) If the set U|(f) is empty then

min (\)(x), F(x, u)Y=0 x edR (14)
veU

Moreover, for each control u* = u*():) which satisfies (14)
(7CH), Fix, v*(x))) < 0 x e OR, (15)

It also follows, from the definition of Ro’ that the regions of oR, at which (14) and
(15) are satisfied (i.e.: Ul(if,) is empty) are built up from integral manifolds of optimal
trajectories which belong to R,.

it is clear that u = ¢(t; Z'(o) is an optimal control when X, € Ro' Moreover,
an optimal control law uo(i), )ieRo, scxtisfies,8 in addition to (8), (10), (11), the

condition

(vC&), Elx, v °x)) Y <0 (16)

for every state x interior to Ro and satisfies the appropriate condition (13) or (14),

(15) whenever x e aRo (x £F). From (6) it follows that

Vi) = Ck) ¥ xeR_ (17)

7. Equations (13)-(15) remain valid at points on 3R, where B(x) is not continuously
differentiable provided that the set U'(x) is mferpreted as the set of values u eU which
"point" the local velocity vector F(x, u) x €0R_, info the inferior of the set R,.

8. It should be stressed that C(x(t)) need not be monotonic non-increasing along every
optimal trajectory which passes through a given initial state x, eR,. However, it is
evident from (8) and the definition of R, that through each initial state x, eRy there
passes at Jeast one optimal trajectory along which C(x(t)) is monotonic non-increasing.
In R,, optimal trajectories of this latter type are the only ones which possess the
Markovian property required for application of the Principle of Optimality [36].

It follows that an optimal control law can be defined in Ry only for optimal trajectories
of this latter type.



It is remarked that the set Ro has a convenient interpretation in terms of
Liopunov stability theory. In particular, if the performance index C(x) is considered
as a generalized Liapunov function for the system X =f(5, uo(i_()), in the sense of
LaSalle [37], then the interior of R° is the corresponding estimate of the domain D
of asymptotic stability with respect to the terminal manifold g.

Let Rmc(D - Ry) denote the largest (not necessarily connected) set of states X
with the following properties. For each X5 eR.,, an admissible control u = Y(t;fo)
and a time f] exist such that the following conditions are satisfied along the corres—

ponding solution of (2).

(i) ’,S(f)ERm ’ ¥rogr<r] (18)
(i) 5(r]) eaRo (19;
(iii) C():‘(f)) < C():‘(f])), M togrgf] 20

and

(iv) Cp(), Flx®), Y0)> = max (), Fl-(5, v®) =0, 1 zi<r  (21)

veU ~
where p(t) = (p](t), coer pn(t)) is a recl, continuons n~vector which satisfies the
differential equations

aF.(x, 7, :
PiTTo Pk i=1, ..., n

and the boundary conditions
0, if x(t;) (@R -J)
pt,) + vCx(t) = (23)
normal to j, if ;('(f]) e

In other words, Rm is the largest set of initial states X0 € (D - Ro) for which the condition

(20) is satisfied naturally along solutions of the following, Mayer type , variational



problem: Find an admissible control u(}), St which minimizes C(’i(t])) subject

... 9
to the restrictions

5(r) € Rm M f05r<r 24

1

) e aRo (i'] is unrestricted)

For this Mayer type variational problem, let 25*(xo) =£*(f](5o);5o) denote a
minimizing "terminal” state corresponding to an initial condition X5 eRm. Then it
follows, from (7), (20) and the minimizing property of ‘>s*(xo), that for each initial

state X € Rm an optimal control for the original problem (1)-(5) is given by
~

Y(t; %) t <<t
() = (25)
¢(t; x"(x ) b, <t<T

The function (6), in this case, is therefore given by

x €R
Vi) = VOGO = CeMee ), T T (26)
~0 ~ ~0 ~ ~O *

x (x )edR

~ ~o o
It is evident from (26) that optimal trajectories in the set R lie on hypersurfaces of
constant V(;()O Moreover, since C(x) is assumed continuous, the function V(x) defined
by (17) and (26) must be coni‘inuous]0 at points x where optimal trajectories from Rm
cross over common boundaries of Ro and Rm. Thus, the equation defining the locus

of such boundary points can be obtained by equating the two expressions (17) and (26).

9. Equations (21) and (22) are, respectively, the Hamiltonian function and the canonical
equations which arise from application of Pontryagin's maximum principle [ 1] to the
Mayer type variational problem (24). Equation (23) is the corresponding transversality
condition for p(t ) and is a consequence of combining the usual transversality condition
[i.e. p(t]) +VC(x(f])) should be normal to the terminal manifold] with the natural
boundary condition (13)

10. This continuity property of V(x), together with (13) and (17), shows that dV(x(t))/dt
along optimal trajectories in Ry, is also zero at points x e IR, where optimal trajectories
from Ry, cross over oR.



It is remarked that, in certain instances, the condition (21) may fail to yield -
a well-defined control Y(t) = Y(x(t), p{t)) during some positive interval of time. In
such cases, the possibility of singular solutions [38], [39] of the variational problem

(24) should be investigated.

From the properties of the sets Ro' R it follows that an optimal trajectory

’i«) which passes through an initial state %5 "(Ro U Rm must necessarily” enter the
set R U R, at some time t, (t <t,<T). However, on the boundary of the set R_UR_,
o 2%V0 2 o m

(6) is known and is given by

C(ff.)' X € aRo
V(x) = (27)
Cl<"(x)), x€dR

where R  denotes the boundary of the set R . Thus, the boundary of the set R,U Rm
can be freated as a new terminal manifoid ;‘72. in this way, the process described above
for constructing the sets Ro' Rm can be repeated for the new terminal manifold .72 and
sets Ro2 and Rr|12 (analogous to Ro' Rm) can be constructed. Continuing with this
process the region D may be completely partitioned into the two families of sets

(R} =18, RZ, R°3, ebond (R =R R, RS, ).

of D into the sets R t, {R }ois completed fhe optimal control for the ariginal problem

When the partitioning

(1)-(5) is completed, 'rhe optimal control for the original problem (1)-(51 is known.
Suppose, for example, that the initial stafe X5 belongs to a set Rok c {Ri} , k>2.
The optimal control, during the time interval, b, St< tk, when x(t) eR"‘, can be
chosen as any admissible control for which C(x(’r)) < C(x ) and x(fk) £ MR I for some
R c {R } The existence of at least one such control follows from the deflmhon of
the Ry type sets. Upon entering the neighboring set R i , the continuat’on of the

optimal control is determined by solving the approprrafe, Mayer type, varictional

11. It has been tacitly assumed that the two sets R,s Rm can, in fact, be constructed
in the manner described. This constructive procedure will fail , for example, if

there exists some neighborhood N 2 such that Clx) > mC'XUC(x) ¥ xc<(N 4!

and dC(x(t))/dt is sign indefinite along every admissible rrc|ecfory x(t) "eN which
satisfies (4). Such cases are degenerate from the point of view of the present theory.
This degeneracy can usually be removed, however, by properly re-defining the terminal
manifold (4).

11
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problem (24) where the "terminal manifold" is taken as the boundaries of the immediately

adjoining sets of the R, type. In this way, the state x(t) progresses alfernai‘elyu and
optimally through the sets of the Ro ond R type and eventually reaches the original

terminal manifold .

4. Minimax Points

The function V(zi), defined in (6), associates a characteristic number with each
initial state X, Txe D. This number represents the maximum value of the scalar

function C(i(.(t)) which occurs along the particular optimal trajectory which starts at

X It some applications, it may be desirable to identify the actual state (or states)

x=E, along the optimal trajectory which starts at Xor ot which the maximum of
C(>A<‘(f)) occurs. We shall call a charateristic state €= 5(50) a minimax point for the
state x . Every state X € D has an associated minimax point. However, the minimax
point S(‘)v(o) associated with a given state X5 is not unique, in general, owing to the
presence of the equality signs in (8) and (20).

From the defirition of the sets {R;} it follows that

= i! 28
E(x ) = x ¥-)'(06{Ro' (28)

~Q

defines ot least one of the minimax pomfs associated with each state x efR' } More~

over, for each |n|hu| state %o e{R } at least one of the associated minimax points is
i3

the state X € a{R } at whlch the optimal trajectory, starting at X elR } first

enters one of the sets {R }

5. A Constructive Procedure for Identifying the Sets {Rci,} . {RniL}

The set Ro can be identified numerically by means of a backward-time flooding

technique provided that, for every %€ Ro’ there exists at least one optimal control

12. Some of the sets {R3} might share common boundaries of the type described by
(14)-(15). In such cases, there may exist (non- umque) optimal trajectories which do
not progress alternately through the sets {Rj}, {R I} Some examples of this type are
illustrated in Section 8 below.

13. Here, B{Rci,} denotes the boundary of the union of the sets {Rg} .



law such that T < for the corresponding optimal trajectory. 14 For this purpose,
we set =T =1t (1 >0) in (2) and consider the reverse-time solutions x(7) of (2)
corresponding to various choices of admissible control functions u(t). At each state
x eR, the condition

min (ZC(x), F(x,u))<0 )ieRo 29)
is satisfied. Thus, in backward time one can always find, at each state X € Ro' at

least one admissible control value which yields

%(_:;(’,ﬁ('r)) >0 x eR (30)

provided the set (Ro =7) is not empty.

Consider a particular (admissible) reverse-time solution '>‘<'(-r) with initial
condition satisfying x(t=0) ¢ T and along which the condition (30) is always satisfied.
It is clear that each state x € D which can be "reached" by such a solution is contained
in the set Ro' Moreover, it follows from the definition of Ro that each state x € Ry
must be reachable by at least one such solution. Thus, the set R is the sat of all
states x which can be reached by admissible reverse~-time solutions of (2} »ith initial
conditions satisfying 5(T=O) ¢ 7 and along which the condition (30) is clways satisfied,
It is recalled that the appropriate condition (13) or (14), (15) is satisfies at non-terminal
states x on the boundary of R_.

When the boundary of Ro is known, the backward-time technique can be used
to establish optimal trajectories in R by integrating equations (2) and (2?), in reverse
time, starting on the boundcxry]5 of R,. In this case, the "initial conditions" for (22)
are given by (23) and the optimal control ¥(7) = Y(>’<v('r), B(T)) is determined from (21),
provided the solution does not contain singular sub~arcs. It is clear from the definition

of Ro that as (2) and (22) are integrated through R in reverse time, the value of

14, Example 3, in Section 8 below, illustrates a case in which this condition is not
satisfied at each Xo € Roa
15. It is remarked that, in general, not all states x € 7 are necessarily terminal

states for an optimal trajectory originating outside ?7 In particular, if @R, contains
poinfs X € T those points may, or may not, serve as terminal states ’.f.(T) for optimal

trajectories originating in Ry

13
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C()‘i('r)) must first decrease below its initial value. The reverse-time integration
through R, is continued until a point x is reached where any further continuation of
the reverse~time integration will result in the value of C(i(-r)) exceeding its initial
value. Each point x determined in this manner is a boundary point ~ of Rm.

When the boundaries of R and R, are known, the backward-time procedure
described above may be used to identify the sets R°2, Rr:; R:, Rms, etc. in an analogous
way.

The procedure described above suggests the possibility of using an analog or
digital computer and self-organizing system techniques to search out and determine

points on the boundaries of the sets {Rc;} , {Rn':} by completely automatic machine

solution. This is an interesting area for further research.

6. Secondary Performance Indices

The optimal control law uo(f‘) is, in general, not unique]7 in the sets {R;} .
For this reason, the design and instrumentation of C-minimax optimal control laws
affords a degree of flexibility which is not usually associated with optimal control laws
for other performance indices. For example, in the sets {R;} it is not unusual to find
that the same optimal performance is obtained when the controller is expressed as
either (i) a bang-bang control law, (ii} a linear, continuous, control law, (iii) a non-
linear, continuous, confrol law, or (iv) a combination of (i}, (ii) and (iii).

The non-uniqueness of the C-minimax optimal control law in the sets {Roi}

suggests the possibility of introducing a secondary performance index for those sets,

Suppose, for example, that G(ﬁ) is an optimal control law for (2)-(5) with a certain
Mayer, Lagrange, or Bolza type performance index. Then, the control law G(x) can
be used as the C-minimax optimal contrel law for (2)-(5) in a set R: c {R;} provided
that

(7C0, Flx, 369)) < 0 ¥ xR @1

16. Not all points of 8Ry, have this property, in general. In particular, some subsets
of 9R,, may be defined by integral manifolds of optimal trajectories which belong to
Rm. For instance, see Example 4, Section 8.

17, The optimal control law in the sets {Rng} can be non-unique in certain exceptional
cases. See Example 2, Section 8.



is satisfied together with the appropriate boundary conditions. Some applications of this

technique are illustrated in Section 8 below.
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1f the performance index C(:(v) is a non-negative definite function it can be

1
shown that the functional (1) can be written as

[ 1 L Ve
max CM) = lim | S [CxM)] dt , Clx)N >0  (32)
boSt<T b | o Lt <i<T

(32) is given in the Appendix.] Thus, for the special case when C(x) is non-negative
definite, a solution to the original C-minimax optimal control problem (1)-(5) can be
obtained, through a limiting process, by minimizing instead the Lagrange-type per-

formance index

.
ol = tim [ [C)I di (33)

p—o

subject to the same conditions (2)-(5). it is interesting fo nofe that, aithough the controi
obtained by minimizing the performance index (33), as u - o, does coincide with one
of the optimal confrols which minimizes (1), it does not exhibit the same degree of non-
uniquesness, in general. An application of this alternative method of solution is
illustrated in Example 1, Section 8. A further discussion of this topic may be found
in [35]. -

Another alternative method of solution consists in replacing the original
C-minimax optimal control problem (1)-(5) by the following problem of controllability

in restricted state space: Find an admissible control u = uc(f) which transfers the state

of the dynamical system (2) from the initial state x(to) =x € D to the terminal

18. Equation (32) may be recognized as the definition of the norm in a xfn (o, TI
Banach space [40] with elements C()f»(f)) > 0.

15
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manifold (4), in some time interval [to, T], subject to the state space inequality

constraint

(o) - Bl < 0 toSt<T (34

o

where B is a specified real scalar constant. The solution to this controllability prcblem,
if it exists, is not unique, in general. Let $ (50, B), %, €D, be the set of all controls
@) = ¢c(t; Xot B) which are solutions and let B(fo) be the set of all B for which

Q(xo, B) is non-empty. It is evident that

Clx) < max Cx(t) <P (35)
O T 7
o
along the solution of
k= Fbc, oTtix , B), ¢ cBlx . B, PeBlx) (36)

Clearly, B(xo) is bounded from below by C(?v(o)' Let B*(Zfo) be the greatest lower
bound of B(zso)g Then for each X, € D, and over the union of all Q(xo, B), Be B(xo),
we have

inf max  Clx®) =B (x,) (37)
t ST -

along the solutions of (36). Therefore, if [3*(50) € B(ﬁo)' a control ¢C(t;fo’B*(l(o))
€ Q(fo' _[3*(3‘(0)) is optimal with respect to the original C-minimax performance index (1).
In this case [3*(5) = V(ﬁ) in the sense of (6).

Warga [30], [31] has developed an elegant alternative method of solution
by using the result (37) to convert the original problem (1)-(5) into a special Mayer
problem in restricted state space and then applying a comprehensive set of necessary

conditions, (developed by Warga), for solutions of Mayer-type optimal centrol

19. Suppose, for example, that there exists a ¢ € BGLB-d) 3(x_, B) such that
X0/ *

max__ C{x(t)) < B*(fo)- Then, there must exist a §< B*(fo) such that Z M9%X _ C(x(t)) SE.

to<t<T to<t<T

~
This latter result implies that B e B(xo) which is a contradiction.



problems in restricted state space. In an independent study, Dubovitskii and Milyutin
[28], [29] used function space techniques involving Stieltjes integrals to develop a
set of necessary conditions (for C-minimax control problems) which closely resemble
some of the results given in [30]. It is remarked that the possibility of using Stieltjes
integrals in the study of C-~minimax control problems was pointed out by Bellman et al.
in [22].

The functional equation technique of dynamic programming has also been used
to study discrete versions of several special cases of the problem (1)-(5). Some of the

results are described in [23], [24] aond [25].

8. Examples

The following examples illustrate application of the method of solution proposed
in Section 3. It will be noted that the simplicity of these examples permits the validity
of the solutions obtained to be readily verified by inspection.

Example 1. As a special case of (1)-(5), let

J[ul = max x]2(t) (38)
b <t<T
o
X, = X
1 2 (39)
>'(2 =u
x(t ) = x_ (40)
x(T) =0 T is unrestricted (41)
)] < 1 (42)

For this problem, it is readily verified by inspection that the set Ro consists

of the closed set of states x bounded by the curves
x, =0 (43)

2
oR :
o)

| =
X +-2— |x2| Xy = 0 (44)

and lying in the second and fourth quadrants of the x| 1%y plane. Equation (13) is

17



satisfied along the boundary segment defined by (43) and (14)-(15) are satisfied along
the boundary segment defined by (44). The optimal control ¢(t; 50), X5 €R s can be
chosen as any admissible control which satisfies (8), (11) and (41). An optimal control
law must satisfy the additional requirement

2
d (x{°)
I 17<0 rogrgT (45)

along the corresponding solution of (39). One control law satisfying these requirements

is given by

o 1
u (f) = -sgn [xI +x |x2| x2] xeR, (46)

where, in this particular instance,
+1 if X3 <0
sgn [0] = (47)

-1 if X >0

The control law (47) may be recognized [ 1] as the time-optimal control law for the

dynamical system described by (39)-(42).

The set Rm consists of the largest set of states X € (E2 - Ro) for which the

condition

2 2
X, t) < x; (t]) rostgr] (48)

is satisfied naturallx along solutions of the, Mayer type, variational problem (24),

The necessary conditions satisfied by such solutions are, from (21)-(23),

I:i;_xl [Py () () +py() ul)] =0+ <<ty (49)
By =0 (50)

Py = P, (51)

pyty) = -2x,(t)) (52)

polty) =0 (53)



From (49) it follows that
W2(t) = sgn p2(r) f.(f) eRm (54)

Moreover, it is readily verified that in order to satisfy (49)-(53) it is necessary to

choose

P, (1) = =2, ()] x, () (55)

"Thus, (54) can be written in the form

v = -sgn [x,(t;)] x eR (56)

m

or, since sgn x](f]) = sgn x2(t), (x2(1') #0), (56) can be written in the control law

form

uOl(t)) = -son [x,(1)] xeR (57)

From (39) and (57) the optimal trajectories in the set Rm are obtained as the one

parameter family of curves defined by
X +—;— |x2| x5 = k k =real, scalar constant (58)

Since x](t) does not change sign along the ophmal trajectories in R m it follows

from (58) that (48) is satisfied in the region (E -R ) where

]
xp 7 % >0 Xy > 0
(59)
1.2
S <0 X <0
Thus, the set Rm is bounded by the curves
Xy = 0
oR_: (60)

1
3 +z |x2|x2 =0

19
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In the complement of R U R every admissible control law has the property
that if x(f )e E - (R UR ) then x(i'2) sahsfles the second of (60) for some t and,
m uddmon, x(t) € E2 - (R UR ) and d/df(x (f)) <0, t <t<l'2

- (R UR ) isaset R 2 of fhe R, type and every admissible control law is an

It follows that

ophmal control law for x e Ro I In particular, one can choose

uo(i(f)) = =sgn [x,(t)] X € R02 (61)
The X1 %g plane is now completely partitioned into sets of the Ro ond Rm
type. One choice for the corresponding set of optimal control laws is given by (46),
(57) and (61). It may be noted that (46) gives a correct optimal control law for all
three sets Ro, Rm, Ro?'. Thus, for this example, the minimum=-time control law also
minimizes (38).
In the sets Ro' R°2, () is given by

V() = x]2, xeR UR? 62)

In the set Rm' the V(x) = constant contours correspond to the trajectories (58). Thus,
in R
m
V) =[x, + 2 R 63
G) =[xy +3 Ixplx)] _ 2 m (©63)

The sets Ro’ Rm, R(_)2 are shown in Fig. 1, together with some representative V(ﬁ) =
constant contours and a typical optimal trajectory corresponding to the optimal conirol
law (46).

In this particular example, it turns out that the sets R, and R02 share a
common boundary defined by (44) For this reason, the previously selected optimal
control law for the set R U R [i.e. (46) and (61)] can be replaced by any admissible
control law such that (45) is sohsfledo One such alternative optimal control law,

which in view of (57) happens to be optimal for the set Rm as well, is given by

o 1 2
u (5) = -sgn [x] +3 |x2| x2] ieE (64)
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Any control law which minimizes (38) also minimizes

J[u] = max le(f)l (65)

and vice versa, Moreover, from (32), (33) it follows that the limiting control law

obtained by minimizing the integral

T n
Nl =4 b 0F o, (66)
t
o
as p = @, must coincide with one of the control laws which minimize (38) and (65).
Fuller [41] has shown that the control law u():, p) which minimizes (66), subject to

the conditions (39)-(42), can be written as

o) = -sen [xy +3 T bl xp] ©7)

where the parameter k(u) is determined from a certain auxiliary algebraic equation
and has the particular values k(1) =~ 0.01433, k(2) ~ 0.05862, and pl_l:&l) k(p) =1/3.
Thus, the control law which minimizes (66), as p = @, coincides exactly with the
alternative C-minimax optimal conirol law (64).

Example 2. The following example illustrates a case in which the performance
index C(f.) is not sign definite and the optimal trajectories in a subset of Rm are not
unique.

Suppose the performance index of the problem (1)-(5) has the form

JIu]l =  max x](f) (68)
t <t<T

with (2)-(5) the same as (39)-(42) in Example 1. Then, following the same procedure
as in the previous example, it may be verified that the set Ro is the closed set of points

in the fourth quadrant of the Xqr x2-plone bounded by the curves



aRO : (69)

The set Rm is likewise found to be the set ofﬂ_l points in the first, second, and
third quadrants of the Xqys x2—plcme with the exception of the points on the positive Xy -oxis.

In the particular subset Rm] C R, defined by

1
Rmy = {xlx; +3 %2 20, x, >0} (70)

the optimal control u°(t) is unique and can be written in the control law form

u°(>:) = ~sgn (x,) Xy R, 71)

In the set Rm2 = Rm - Rm], however, the optimal control, obtained by solving the
appropriate Mayer problem (24}, is non-unique. This is due to the fact that the function
C(i) =Xy, evaluated on the "terminal manifold” aRo, attains its minimum value at a
state (>'<v= 9) which can be reached, using an admissible control satisfying (20), from
every initial state X € Rm2° That is, the functional J[u] defined by (68) turns out

to be "independent of path" for every trajectory x(t) € Rm2, fo§t<T, which satisfies
(41). It follows that

V('>\<') = constant = 0 ¥ xe Rm2 (72)
. pe 2 . 2
It may be verified that the set E - ROUR s a set R, of the R, type. The
sets Ro' Rm and R°2, together with some representative V(x) = constant contours and

a typical optimal trajectory, are illustrated in Fig. 2.

Example 3. As another special case of (1)-(5), let

Mol = max  [x() +x2(t)]2 (73)
toSt<T

23
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with (2)-(5) the same as (39)-(42) in Example 1. The absolute minimum of the functional

(73) occurs on the line

Xy txg =0 (74)

which is an integral curve of (39) when u is chosen appropriately, Therefore, the
construction of the set Ro begins by looking for a segment of the line (74) which is
an integral curve of (39), for some admissible control, and along which the terminal
condition (41) is satisfied. |t is readily verified that such a segment exists and is

defined by

X

+x, =0 Ix]l_<_] (75)

1 2

it is observed that the terminal condition (41) is satisfied along the trajectory (75)
only as t = . The remainder of the set Ro consists of the set of all states X which
can be joined to the segment (75) by admissible integral curves of (39) along which

the performance index [x](f) + x2(l')]2 is identically non-increasing. This set is

bounded in part by the lines |x2| =1 and in part by the curved segments defined by
+ \/—2x] -1 ) < -1
Xy = (76)

It is observed that oR is not everywhere differentiable.

The optimal control law in the set Ro can be constructed in a variety of ways
since the optimal control in that region is non-unique. One possible optimal control
law is constructed as follows. Equations (75) and (76) together define a continuous
curve Q in the X, r%g state plane. In the subset of Ro which lies to the right of the
curve Q, the optimal control law can be chosen as

msgn 469, ¥;6) # 0, x; > 1
Ppg < 4 T o X > @7)
- -sgn § (x), gx) £ 0, Il <1

-xy = k ¢0), px) =0, Iyl <1, k>0

25
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where {(x) = 2x] -1+ Xy and g(x) = xp + %, Likewise, in the subset of Ro
which lies to the left of the curve Q, the optimal control law can be chosen as
-sgn U090, ¥,(x) A0,  x; < -1
-],11!(‘>5)=0 x, <=1
“o(’,ﬁ) - 2 1 (78)
-sgn ¢(x), ¢(x) # 0, CHEQ
-x2—kg(’xv), g(>9.=0, ]xlls i, k20

2

introduced as a technical device to permit stabilization [39] of the integral curve (75).

where ¢2(x) = —\/-2x] - T + x,. The arbitrary scalar constant k in (77) and (78) is

Altematively, the control law in the last members of (77) and (78) can be replaced

by the expression

uo(ﬁ) = =sgn (x] + x2), |x]| <1 79

in which case the representative point x(t) will move along the curve (75) in a sliding
(chattering) mode [42].

The set Rm is determined, as before, by solving the appropriate Mayer type
variational problem (24) using the boundary of Ro as the terminal manifold. In this
way, it is found that the boundary of R, is defined, in part, by the lines |x2| =1

and in part, by the curved segments

-1 +2\/-x] X < -1

Xy = (80)
1 -2/ X X, >1
The optimal control law in the set R can be written as
° = -
v (i(,) = -sgn xp ieRm 81)

The complement of RoU Rm is a set of the Ro type (and is therefore denoted
by R°2) because for each initial state X, € R02 there exists an admissible control law

and a time tp >t such that ).-(,(t) GRO2 and d/dt[xl(t) + x2(t)]2 <0 for all t <t<ty



and ’.f.(t2) € R _. For example, choose the control law

o, \ _ 2
v (35) = =sgn x, X € Ro (82)
2 . .
in the sets Ro and Ro . (6) is given by
V{x) = (x +x)2 x eR UR2 (83)
~ 1 2 ~ [o] o

In the set Rm_, V(x) = constant along optimal trajectories and (6) is given by
~N

1 2
V) = [xg sam x, +3 (1417, xeR ©4)

m

2

r . F{sYa\Y 1Le 1 1 fe Y} [} ] . 1 . n !
Cxpressions (0VUj, which dertine rhe common poundadary segmenrs perween Km and Ko

can be obtained, alternatively, by equating expressions (83) and (84).

The sets Ro’ Rm, and R°2, together with some representative V(z) = constant
contours and a typical optimal trajectory, are illustrated in Fig. 3.

It is interesting to compare the optimal control law (77), (78), (81), (82), for
the present example with the optimal control law for the problem of minimizing the
Lagrange, integral type, performance index

T
J[u] =J; [x](f) + xz(t)]2 dt, (T - unspecified) (85)

o
subject to the same restrictions (39)-(42). The solution to this latter problem has been
described in [39], [43], and [44] and consists of both a bang-bang mode and a
singular mode. The singular mode trajectory is identical with the line segment (75)
and is joined, at |x1| =1, to two bang-bang switching curves, A comparison of these
two solutions is shown in Fig. 4. It may be verified, from Fig. 4 and the fact that
the sets Ro' Ro2 share a common boundary, that the control law which minimizes (85)

also minimizes (73) for initial conditions X sufficiently near the origin.
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Example 4. As another special case of (1)-(5), let

Jlu] = max x]2(f) (86)

t <t<T

(o]

X =%
)'(2 = =%y * u(t) 87)

Xt =x,
x(T) = 9, T - unrestricted (88)
lv®)] <1 (89)

For this problem it may be verified that Ro is the connected and closed set of states

x bounded by the curves

aRo : ) (20}

2 -
(x] + sgn x2) +x, = 1, |x]|52
and lying in the second and fourth quadrants of the X1 x2—planeo The optimal

control law for x €R_ can be chosen as any admissible control law which satisfies
~

@8), (11), (88) and

£ (20 < 0 Po<r<T (91)

along the corresponding solution of (87). One such control law is given by

o) 2 2
u (,)\(.) = sgn [x] - 2|xl| + Xy 1, ieRo (92)
with
+1 if X >0
sgn [0] =
-1 if x, <0

which may be recognized [1] as the time-optimal control law [in the set Ry for

the dynamical system described by (87).



The set R, is determined, as before, by solving the appropriate Mayer problem

(24). In this way it is found that Rm is the two sets of points bounded by the curves

aRm: X, + = |x2| x, =0 (93)

(x] +sgnx2) + X, =9 |x]|5 2

x €Rm

;gn (0) =sgn (xq) (94)

uo(x) = =sgn x,,

It may be noted that the particular boundary segment of R, defined by the last
expression in (93) is an optimal trajectory which belongs to Rmu

The set R02C (E2 - RoU Rm) is the largest set of initial states X5 with the
following property. For each X0 € R02 there exists an admissible control u(t), o SH<t,,
such that, along the corresponding solution of (87), C(x(t)) < C(fo) and x(t) € RS
for all b St<t, and x(tp) e 9R . In contrast with the previous examples, the set R,
for the present example is not the complement of RoU Rmo Instead, it is found that

2. .
R0 is the two, disconnected, sets of states bounded by the curves

X, =0
1
x, += |x,f x5 =0
6R02: 12 4 172172 , (95)
X - 2|x]| +x2 =0
2 2
(x] + sgn x2) + %, =9

and lying in the second and fourth quadrants of the x],xz—plane, In R02 the optimal

control law can be chosen as

u’(x) = sgn Xo x eR (96)
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The set Rm2 is determined, as before, by solving the appropriate Mayer problem
(24) using 3R02 as the "terminal manifold." In this way, it is found that Rm2 is

bounded by the curves

Xy = 0
1
X, += Ix,} x, =0
awr2.( 1T 4 2! 72 (97)
m (x +sgnx)2+x2=9
1 2 2
2 2 _
(xl + sgn x2) + Xy = 25
It is noted that the set Rm2 shares a common boundary with the set Rm. In Rm2 the

optimal control law can be expressed in the same form as (94).

The remainder of E2 is partitioned into the sets ROS, Ro4, eoo and Rn?, Rr:r, coo
by repeating the process described above. It may be verified that, because the sets
(Ro' Rf), (Roz, R°3), (=:tc., share common boundaries, the individual control laws for

the families of sets {Rc;} and {Rrrlr} can be replaced by the one control law

u2(x) = -sgn [x] +:]1- |x2| x2] , X € E2 (98)

~

which is optimal throughout E2. Alternatively, the somewhat more complex time-
optimal control law [1] for (87)-(89) can also be used as a C-minimax optimal control

law for arbitrary x e E‘?°

The particular sets Rol, le’ i=1, ..., 3 together with some representative
V = constant contours and a typical optimal trajectory are illustrated in Figure 5,

Example 5. As a special case of (1)-(5), let

J[u]l = max [ %

2¢) + x,7(0)] 99)
t°_<_fs T

1

with (2)-(5) the same as (39)-(42) in Example 1.
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For this problem, the set Ro is the closed and connected set of states x
bounded by the curves
x, =0 |x]| > 1
R : (100)
1
Xy t3 |x2| Xy = 5gn X,

It may be noted that OR is not everywhere differentiable.

The optimal control for %o € R, can be chosen as any admissible control which
satisfies (8), (11) and (41). An optimal control law must satisfy the additional require-
ment

gt- [xlz(r) + x22(f)] <0 t<t<T (101)

along the corresponding solution of (39).

The set Rm consists of the largest set of states X € (E2 - Ro) for which the

condition

[x 0 + g ] < Dx,200) + ()]t <t (102)

1

is satisfied naturally along solutions of the Mayer variational problem (24). Proceeding
as in Example 1, it is found that the set R, consists of two disconnected sets: (i) the

set of states x lying above the broken curve defined by

x2=0 xlzl

aRm: (103)
+lx2=+] X, > 0
1 T3 %2 2=

and (ii) the set of states x lying below the broken curve defined by

x, =0 x, < -1

R (104)

X
1
B —
X

(N4
I
]
X
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In the set Rm the optimal control law can be written as

uo(x) = -sgn x, x €R (105)

~ m

The complement of RoU Rm is a set of the Rc> type and is therefore denoted by
R02., For any state x ¢ R02 it is always possible to find an admissible control law such

that along the corrrsponding solution of (39) the following conditions are satisfied

2
35(!') € Ro f°5r<r2 (106)
x(t,) € aR_ (107)
d 2 2
F 50 +x,01<0 b St (108)

for some ty >t - For example, one such control law is

uo(x) = -sgn x, x eR (109)

The X%y plane is now completely partitioned into sets of the Ro and Rm

type. In the set Ro and Roz, () is given by

2 2 2
V(::) = (x] + x2) ﬁeRoU Ro (110)

and in the set Rm' (6) is given by (compare with (63))
1 2
V():‘) = [x] t3 |x2| x2] ieRm (111)

Since V(ﬁ) is continuous across the common boundary segments of Rm and R02 the
equations for those boundary segments, previously given in (103) and (104), can be
obtained directly by equating (110) and (111).

The sets Ro’ Rm, and R°2, together with some representative V(’>‘<') =

constant contours and a typical optimal trajectory are illustrated in Fig. 6.
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9. Performance Improvement with C-Minimax
Control - A Geometric Interpretation

Suppose that the uncontrolled dynamical system described by
%= F°6) (112)

is asymptotically stable with respect to the terminal manifold (4) for all initial states
X € D°c D. Suppose further that the same dynamical system, when subjected to an

external control u(t), obeys the differential equation
x = F(x, u(t)) (113)

where F(x, 0) = F°(x).

The maximum value of the performance index C()f_(f)), rogng, which occurs
along the solutions of the uncontrolled system (112) [with X, € Do] , can be studied
by the same techniques used in Section 3. By this means, the two sets ﬂb and ﬂm
defined by

€] ={x_ ¢ D° max C(x(t)) = C{x )}
o ~0 | bieT %o
© (114)

={x eD°] max C(x(t)) > C(x )}
B =12 ltogng ~ ~°

can be constructed in the state space E” of the system (112). Then, proceeding as

in (6), one con define a function V(xo) on the subset D° ¢ E" by

V(x ) = max C(ﬁ(f)) Xo € D°

(115)
~0 t <t<T
o— =
so that

Ch) , xR
V(x) = (116)
>C(x) ¥ x e ‘&m
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The function V(Zv(o) in (115) indicates the quality of C-minimax performance which
is realized from the transient response of the uncontrolled system (112). The result
(116) can be visualized geometrically in the product space E] X E™; Z, XyrXgreeer X

o
by considering the two surfaces Vand C defined as

V=1 9 8" X |2- vy = 0}
(117)

C =10t XE"|z-Cl=0)

According to (116), the surface ‘)/lies "above" the surface C at each state x ¢ 'R
while, at each state x e-a%o, the surfaces ondc intersect {coincide). Thus, fhe
set®R_c D is the projection, onto the subspace E", of the ' 'points of contact” between
the two surfaces c)/and C,

It follows from (7), (115) and (116) that, for initial states X € ﬂ;, the quality
of C-minimax performance of the uncontrolled system (112) cannot be improved by
application of external control u(t). That is, the application of external control u(t)
cannot improve the quality of performance if the initial state X corresponds to a

"point of contact" between the two surfaces cVand C On the other hand, if Xo € ﬂ
the surface ‘)/hes "above" the surface C and therefore the quality of C-minimax
performance for that initial state can be improved by the application of external
control, provided that an admissible control (satisfying (4}) can be found which moves
the surface ¥ "closer" to the surface C’ The new "points of contact" between Vand
Cu, achieved by this means, correspond to states x which leave the set ﬂ and join
the set 'R. In addition, any initial state x_ e E" - D° which can be confro“ed to the
terminal momfold (4) by some admissible control u(t) becomes o member of one or the
other of the sets ﬁo or ﬁmn In this way, the set D is obtained as the union of D°
and the set of all states X, € E" - D® which can be controlled to 7wirh an admissible
control.

Thus, the effect of applying a C-minimax optimal control to the system (113)
can be viewed in E] XE" asa "depressing" of the surface aydown onto the surface c



in such a way as to (i) increase the areas of contact between ‘Vand C‘wherever
possible and (ii) decrease the original "distance" between ’Vand Caf those states
xeD where contact between ﬂ]/cmd C‘cannot be achieved. The absolute "best"

performance, in the sense of C-minimax control, is achieved when the two surfaces

%nd C‘coincide for every state xeD.

10, A More General Class of C-Minimax Performance Indices

£ Cominimmey, Lom o e fndl mae mrancidarad 1n tha nracan +
[ ) UICES CONSIQEICa in nc preseni

study does not admit those cases in which the performance index C(:) is an explicit

function of the control u(t). On the other hand, there appear to be many practical

interest, therefore, to consider the possibility of extending the techniques described
above to the more general class of C-minimax performance indices of the form C =
C(f,' u). Two methods for accomplishing this are described below.

One method which permits application of the C -minimax theory developed
above to the case C = C(z‘(‘, u) consists of infroducing the new state varioiablexn_ﬂ =u(t)
and considering w(t) = du(t)/dt os the new control variable. In this way, the additional

state variable equation

X = wit) (118)

X w
n+]

can be appended to (2) and the resulting performance index C(i’ u) =C(),(J xn+]) can
be expressed in the form of (1). Application of this method is complicated by the
necessity for selecting a suitable class of admissible control functions w(t) [it may
be necessary to introduce an artificial bound on admissible values of w(t}] and by
the presence of "hard" (inequality) constraints imposed on the new state variable
X 4 through the original control set (5).

An alternative method for treating the case C = C(ff,r u) consists of introducing,

as before, the new state variable X 4= u(t) and requiring that X4 satisfy the

special state variable equation

X

aa = kL - wl) (119)



where k is a positive scalar constant and w(t) is a new control function which belongs

to the same class of admissible functions as the original control u(t). By this means,

(119) can be appended to (2) and the performance index C(i’ xn_H) is reduced to the
form (1). The exact solution to the original problem [i.e.: the attainment of the
condition X (t) = u(t) =wft)] is obtained, through a limiting process, by letting

k = o in (119). This method has the advantages that the new optimal control function
w(t) is sought in the same class of functions as u(t) and, except for the initial condition
n+l ®).

The two techniques described above can be used to study a variety of the

requirement X 4] (fo) eU, no inequality constraints are imposed on x

cases C(x, u). However, if C(-) has the special form C = C(u), the C-minimax
(o d
optimal control can be obtained by means of an essentially different method based
on the theory of functional analysis. Some particular results which have been obtained

by this method are described in [45]-[50].

11. Areas for Further Research

The deterministic C-minimax problem considered in the present study can be
generalized to include dynamical systems with non-deterministic parameters. In
particular, one might consider dynamical systems described by stochastic differential
equations and replace C (x(t)) in the functional (1) by the expectation of C(x(t)).
Stochastic optimal control problems of this type have apparently been studied relatively

little [51], [52].



Appendix

An Integral Representation for the Maximum of a Non-Negative
Continuous Function = An Elementary Proof

Theorem

Let f(t), t e “o’ T], be a real, non-negative definite, single-valued, bounded,

and continuous scalar function defined on [to, T}. Suppose

max f{t) = M (120)
te [fo,T]
Then
. 1/p
lim | S [f®)1F dt =M (21
poo |1,
Proof

N
Choose a constant 0 < ¢ < M and define the comparison function f(f),

t e [fo, T], as follows
0, if ft) < (M- ¢)

) = (122)
M=-¢€, if ft) > (M- ¢

Clearly,
) < f(H) < M Mtelt,T) (123)
so that
T . 1/p T 1/p T 1/p
[f [f(r)]“dr] < [f [f(f)]“df] < [f MmH dr} (124)
rO fo fo

¥i‘e[f°,T], p>0
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which can be written

k 1/p T 1V
M- | 50| <[ e < M-V (12)
1 t

[o]

where the Si(e), i=1, ..., k, denote the k positive intervals of time for which
f(t) > (M - €). Note that 0< ‘]1: Si(e) < (T- fo) for all 0 < ¢ < M. Taking the

limit as g = oo in (125) there obtains

T 1/p
M-¢ < lim [ [ [f(t)]pde <M (126)
P—)m fO

Since (126) is valid, in particular, for arbitrarily small positive ¢ the result (121)
follows as ¢ = 0.

It can be shown [40] that the result (121), with M interpreted as the essential

supremum of f(t), remains valid (almost everywhere on [fo, T1) even when f(t) is

only a measureable function.
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Iil. Three Examples of Differential Game Problems in Optimal Contro! Theory

C. D. Johnson

The purpose of this study is to illustrate, by examples, the type of optimal
control problems which can be solved by application of the theory of differential
games. The method of solution is based on the combined application of the classical

Hamilton-Jacobi~Carathéodory theory of a value function and the Principle of

Ontimality The theoretical foundations for this method are omitted here since
Optimality, 1he ftheoretfical roundations tor this merhod are omitteg nere singce

they are described, in detail, in the recently published treatise on differential
games by R. Isaacs [ 1]. The reader is assumed to have some familiarity with this
le illustrates o differential gome with

basic reference The first exam a
the first exan me with qu

................ ip!
performance index and hard inequality constraints on both controls. The second
example illustrates a bounded control differential game which possesses a singular
solution - a situation which is quite common in this class of problems. The last

example is the differential game analogue of the classical optimal linear regulator

problem.

Example 1 - A First Order System

In the class of piecewise continuous functions, find a pair of minimax controls

{ vo @), w® (1)} such that the minimax condition
JLoe, wh < Jlufw?l < Jlu, w0l (1N

is satisfied for all admissible controls u (t), w (t)

where I
Jlu, wil = % f [ x2(f) + o2 ()] dt 2)

o
X = —axX +u4w (3)

47



and
x (0) = X

x ()= 0
T - unrestricted
|w(f)| <M

v ®] < N (N > M > 0) (4)

In (3), a is a real scalar constant and u (t}, w(t) are real scalar functions of time.
Proceeding in the spirit of differential gome theory, we define the value of
the game payoff V (x) as
V (x) = minmax J [u, w] PX =X (5)

velU weW

where U and W represent the set of admissible values for the controls v and w

respectively. It is assumed here, and in all examples which follow, that the game

has a proper saddle point so that

min max Jluwl] = max min Jluwl (6)

uelU weWw wewW uvelU

Then, the value V (x) satisfies the Hamilton-Jacobi equation

2
A Iavl LAY 1 8V, N 2 1 av, 1 .2
OXE M EK-I-NS_XSC”-(W?X—) TSO" (_Né_;) ix =0 (7)
and the minimax controls u°(t), w°(t) are given by
ofy - 1 8V(x(r) )]
U (f) = N SCt[N W
wot) = M sgn[%)] (®)
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The pair { u°(t), w(t)} can be determined by solving (7) directly, or, alternatively,
by solving for the characteristic strips of (7). Here, we solve (7) directly.

Assume that

0< 2¥Y <« N (9)

Then, w® =+ M and, noting the required boundary conditions (4), it follows
from (7) that

aaTV = = (ax = M) + (sgn x) J(ax —M)2 + x2' (10)

From (?), it is clear that (10) is valid in the region

0<x< +aN + /N (@%+1) - 2NM (1)

In a similar manner, it is found that in the region

N < <o (12)
(7) is satisfied by
—2% = = (ax + M) +(sgn x) /(ax + M)2 + XT (13)
which holds in the region
“aN - /N (@211) - 2NM <x <0 (14)

It may be noted that (11) and ( 4) define real upperand lower boundaries,

respectively, only if

N> ZM (15)

a +1
Finally, from (10) and (13) the minimax optimal controls (8) can be written in the

state variable feedback form
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u®(x) = N sat N_] [ ax - (sgn x) (M + \/(ax - M sgn x)2 + xz)]

w(x) = Msgnx (16)

Example 2 - A Second Order System

50

In the class of piecewise continuous functions, find a pair of minimax controls

such that (1) is satisfied for all admissible controls u(t), w(t) where

{ue(@®), w(t)}

)
Jlo,wl = '/2f [0+ x,2 )] dt (17)
°
>'<] = X+ W (18)
%, = u (19)
x0) = x
x,(T) = 0

Xy (T) = unrestricted

T - unrestricted

|

v )| < M

[u®)] (20)

N

In this case, the value V(x) of the game satisfies the Hamilton-Jacobi equation

v Vv AY 1 2. 1 2
X25;<—+M|a—;l| -N a—x—2 +-2— X-I +'2'X2 =0 (2])

1

and the minimax controls are given by



VvV x 1))

v°() =~ Nsgn axz

wo() =~ M sgn :_:/] G ) 22)

In this example, it is not so easy to solve (21) directly. However, if there exists a

singular solution [2], it may be possible to effectively solve for {v°, w°} by

tracing out the characteristic strips of (21) starting on the singular manifold.

Proceeding as in [ 2 ] we find that there are two possible singular solutions. The

particular singular condition

VvV x () _
a—x-]—" = 0 (23)
implies that
x]('r) = o0
1 |, = min (24)

This yields the minimin solution ; i.e., both controls "working together” to achieve

an absolute minimum of (17). This solution is of no interest in the present study.

The other singular condition

vV (x(t)) _
dx =0 @3)
2
implies that
20 = X0 0] < N
w(: ) = -Msgn x2(f) (26)
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From (21), (26) and the given terminal and constraint conditions (20), the singular

manifold for this case is found to be described by the expression

Xy = 5gn X, M+ \/M2 +x§] ] (27)

which is defined over the regions
~-N<x,<0 if Xq >0
0<x, < +N if Xy <0 (28)

There is some reason to suspect that this singular solution does play a role in
the present minimax problem. For instance, as M = 0 (i.e. as the "player" w(t)

becomes less and less potent) the singular manifold (27), (28) degenerates to

= -x, ' |x]| <N (29)

However, the solution to the case M =0 is already available [3] and it is true that,
for that problem, the singular manifold (29) is opfimal.] A rigorous proof of the
minimax optimality of the singular manifold (27), (28) can be established by showing
that the derived function J[u, w], X, =% evaluated throughout an ¢ neighborhood
of the singular manifold (27), (28), does indeed satisfy the Hamilton-Jacobi equation
(21). This process usually involves somewhat lengthy calculations and will not be
attempted here. Hereafter, we proceed on the assumption that this proof has been
established.

On the singular manifold (27), (28) the values bf BV/ax] . aV/Eix2 are given
by

1. In [3], the terminal condition is specified as x](T)= x2(T) =0.



oA I (30)
ax2

H

Also, the general expressions for the characteristic strips of (21) are (setting: Py =
-av/ax], Py = -6V/8x2; see [4])
Pi =%

P2.= P +X2 (31)
Thus, by computing the reverse time solutions to (18), (19) and (31), using the initial
conditions (30) with u®(T) = IN, we may "flood" the x| = X, space with minimax
"optimal" trajectories which have one end lying on the singular manifold. This
process does not completely "cover" the x| = X, space with trajectories. The voids

are filled by reverse time trajectories of (18), (19) and (31) which start on the specified

terminal manifold: x](T) =0. In this case, we replace the initial conditions (30) by

corresponding values computed from the transversality condition which yields

2
X2
v M- ¢ 27 M
— = _ 2
ax] o x2

M) ¢ 2 <M

v

o,

2

=0 (32)
t=T
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It may be noted that there are no minimax optimal trajectories which terminate on
the sector of the terminal manifold defined by: x, =0, [xo| < M. This result is
characteristic of "minimax” differential games.

As theflood paths described above are traced out in backward time, the
set of points {?v(i(t)}P2’ at which p2(t)2= 0, build up a "switching manifold" across
which u®(t) switches from XN to ¥N.” This u® switching boundary joins with the
singular manifold (27), (28). This completes the solution to this minimax problem,

The results are summarized in Figure 1.

Example 3 - An nth Order System

In the class of piecewise continuous functions, find a pair of minimax
controls {ue(t), wo(t)} such that (1) is satisfied for all admissible controls u{t),

w(t), where

.
Jo,wl =g f [<x), Qx®)> + L) - Fwie)] o (33)
(o]
?:(=£\5 +U_f+w§ (34)
and

x(0) =X

x(M =0
T - unrestricted (35)

In (33), x is a real n-vector, Q is a real nxn, constant, positive definite matrix,
and c and r are real, non-zero scalars. In (34), A is a real nxn, constant
matrix and f and b are real n-vectors. In this example, the values of u(t), w(t)

are not restricted.

It turns out that the function p(t) has no zeros along the flood paths. Thus,
wO(t) = M sgn x{t).

Here, <x, y > denotes the inner product of x and y.



Gg

wd)=M sqn %, @)

!

Figure 1 -- Field of Minimax Optimal Trajectories for
Example 2.
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We need to assume this game is proper. That is, for any initial condition
Xy and any admissible w(t) there is at least one admissible u(t) which can satisfy
the terminal conditions (35). This requirement is the differential game analog of
controllability. Under these assumptions, the value of the game V(x) satisfies

the Hamilton=Jacobi equation

<PV, Ax>= 22 <PV, P + 272 <yV, b +2<x, Qx> =0 (36)
where VV = (_B_\L ; oo ey ﬂ), and the minimax controls are given by
- ax] axn
o - -2
WO = -2 <PV EH), 1>
o -2
wt)=r <YV()5(t)),b> (37)

In this particular example, the direct solution of (36) can be carried out by

assuming the solution V(x) is a quadratic form in x. More precisely, let
Ve = 5 <x Mx>, (38)

4
where M is a real, constant, positive definite, nxn matrix. Then, (38) is a solution

of (36 if M satisfies the matrix equation

2

MA + AM + M(2bb' - <)M +Q = 0 (39)

Under appropriate conditions on the matrix [r-2 bb' - c-zfi'], (39) has a unique
real, positive definite solution M. Using this solution, the minimax controls (37) can

be written in the state variable feedback form

W) = -7 <My, £

2 <Mx, b> (40)

~ o~

wO(x) =

It is clear from (33) that V(x) must be positive definite.



It may be noted from (40) that u®(x) and wO(x) are linear functions of the state

variables Xyr eeer X

The case of the above problem with bounded controls, Iu(t)l <N, Iw(i')l < M,

can be solved, in principle, by employing the techniques which were used to solve

the Problem of Letov [5].
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IV. A Note on the Transformation to Canonical (Phase-Variable) Form

C. D. Johnson and W. M. Wonham

Introduction
Consider the control system defined by

: = .=4d
x=Ax+ul) £ = a (M

where x = (x., . . . , x ) is the state vector of the plant, A isan (n x n
~ 1 n P ~

constant matrix, f = (F], « « «, f)isaconstant n vector and u(t) is the
~ n

scalar contro! function.

. 1,2 . . . .
It is well known ’ * that, if the pair (é,i) is controllable, there exists

a nonsingular linear transformation

x =Ky

which reduces (1) to the canonical (phase-variable) form

yEhy e

where
0 1 0 T (0]
o o0 1 . 0
2o = e e @
1 0
0 9y ag - - a ] 1]

This work was supported in part under Contracts No. NAS8-11231, AF 49

(638) - 1206 and AF 33 (657) - 8559,
C. D. Johnson is with the Department of Electrical Engineering, University

of Alabama, Huntsville, Alabama.
W. M. Wonham is with the Center for Control Theory, Research Institute for

Advanced Studies, Baltimore, Maryland.

] R. E. Kalman, "Mathematical description of linear dynamical systems,"
SIAM J. on Control, ser. A, vol. 1, pp. 152-192; 1963.

2 R. E. Kalman, "When is a linear control system optimal?" ASME Trans., J.
of Basic Engrg, Vol. 86, pp. 51 - 60, March, 1964,
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. 3
In a previous paper, ~ a general procedure for obtaining the matrix K
was described but no explicit expressions for K were given. In the present note,
an expression for K is derived in terms of the Vandermonde matrix and a modal

matrix of A, on the assumption that the eigenvalues of A are distinct.

Main Result

Let the eigenvaluesof Abe A\,, . .., A andleta., ..., a bea
~ ] n ~1 ~n
corresponding set of eigenvectors. We recall that the Vandermonde matrix

of é is the matrix Mv with elements

M) =2 Gi=1, . ). 3)

~Vij i

The modal matrix l\A is

M=la,....ga]

~

and has the property
MlAM = A @

where
_/~\=dicg [}\], . e vy )\n].

The pair (ﬁ, f) is controllable if the vectors f, Af, . .., én_]f, are linearly
independent.

It will be shown that the required transformation is

1

K ~Me M T (5)

N ~ v
where B is a diagonal matrix defined in the following theorem.
Theorem
Let A, fbe real and let (A, f) be controllable. Suppose the eigenvalues
)\], .

the Vandermonde matrix of A. Then a nonsingular diagonal matrix B exists such

. or >\n of A are distinct. Let {\_A be the modal matrix of A and let Mv be

that
g = ©

3 W. M. Wonham and C. D. Johnson, "Optimal bang-bang control with quad-

ratic performance index,” ASME Trans., J. of Basic Engrg., vol. 86, pp.107~115;
March, 1964,



Moreover, the matrix
\ .
A =M BM ]AMB M =1

Ro TRVED NN A )

is of canonical form (2) with real elements 13
ca \Z) with real elements, It

X = Ax +ult) f, ®)
then the transformation
x=mM Ty
reduces (8) to i
,? =50Z +U(f)_f .
Proof
The transformation -’-(z':‘."‘f reduces (8) fo
Dz ol
where

s=Mt ©

. . -1 .
Since (A, f) is controllable, the vectors ¢, Ac, ... ;I\ ¢ are linearly
L. ~ ~ ~ A~ ~ ~

independent; it follows, since the )\i are distinct, that the components ¢, of ¢
I ~
are all nonzero.

Let C =diag (c], « ««,C); then MVC is nonsingular. Define
”»~ n -~ ~

b=(b,...,b)’
~ 1 n
=(M C) (10)
~NY A~
and let
E=diag (b], . ey bn). amn
By (9) and (10), M le\ ]f MVEE—MVEb —F , so that (6) is satisfied.

The bi are all nonzero. For suppose bi =0 ifi= i], o e ey ik. By

(10), Mvgg_ ="fo° Let Eg be the matrix obtained from Mvg by deleting the

last k rows and i], e oy ikfh columns. Then Mvg is nonsingular; the last
equation implies bi =0 for the remaining bi's; and this contradicts (6). Hence
B is nonsingular, Ao is well defined by (7); and (4), (7) give

A=MAM, (12)
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Writing [Mv-]]ii = His and using (3) and (12),

i-1
~on| Z Z )‘r )‘rsrs Fsi
=1s =1
i=1,...,n=-1i=1,...,n)

6i+l,i

= n

Z xr“Fri (i=nmij=1,...,n).

r=1

Thus 'Ao is of form (2) and, since é, ‘é‘o have the same eigenvalues,

Z a NTE O L 0o,

so that the a, are real if A is real. This completes the proof. The transfomation

to canonical form is illustrated in Fig. 1

An Example

As an application of the theorem, consider a third-order system (1) with

>
I

11; £= 11. (13)
-1

The eigenvalues of A are

A, = - 1T+

-1-0 (=v-1")

o
1

and the modal matrix of A is

0 5 5
M= |1 -3 -4 -3 +4
1T 2+j 2-j
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ARBITRARY(CONTROLLABLE)FORM

~ A; DISTINCT
K 7 \+“7\
A\Y X
L \+*
{5)»
\L >
y=M,z
-l .
2=Nz+u(t)ME y= Ay+ult)f
DIAGONAL FORM 5 = M-ly CANONICAL FORM
= ~'vd
3 A,f cven By @
MV'{.\'MV =Ao
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From (3), the Vandermonde matrix of A is

1 1 1
M =11 =1+ -1-j
~v

1 -2 2i

With these values of f, M and Mv the matrix E—]is found from (6) to

b
) [0 o o ]
01-3 o |.
0 0 1 +3j

The matrix K is then given by (5),
0 -1 1
K={f0o 3 1},

[2 1 1]

and the transformation x = Ky takes (13) into the canonical (phase-variable)

form
0O 1 0 0
A =10 0 11; f =10
~0
2 0 -1 1



V. Another Mote on the Transformation to Canonical (Phase-Variable) Form

C. D. Johnson* W. M. Wonham**

Introduction
Ky

~L

The problem of determining a nonsingular linear transformation x =
which will take an arbitrary, completely controllable, single=input, time-
invariant linear dynamical system

x = Ax
~ L

~

+utf  (T=d/di) (1

into the canonical (phase-variable) form

y=hox et @
where
- - r -
0O 1 0O .. O 0
0O 0 1 0 ... O 0
0 0 0 1 .. 0 .
Ao - : . I 'fo S )
. 1 0 .
0 1 0
_a] 02 . e an_] an ] ]J

was posed and completely solved in [ 1], Since the publication of that result
various features of the transformation method described therein have been re-
discovered and published as "new results,” [2], [3], [4]. The purpose of this
note is to point out, in more detail, some of the inherent computational features

of the transformation method originally described in [1].

This work was supported by the National Aeronautics and Space Administration
under Contract No. NAS8-11231 and Grant No., NsG-381,
*Department of Electrical Engineering, University of Alabama in Huntsville,

Huntsville, Alabama.
** Center for Dynamical Systems, Division of Applied Mathematics, Brown
University, Providence, Rhode Island.
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A General Method for Determining the Matrix K

In Appendix 1 of [1], it was shown that, given an arbitrary completely

controllably pair (é, f), the required transformation matrix K could be effectively

computed by the following procedure.

1} Form the controllability mafrix] H defined by

H=If, Af, A%, ..., A" ') )

2) Compute ﬁ_]
3) Compute the coefficients a. of the characteristic polynomial

of Ali.e., last row of éo] by the following rule2

a=<h,A> i=l,...,n )
=~ -1

where hi is the irh row of H .

4) Form the symmetric matrix L defined by

~a, “ay  -ay cee Ty T9 1
-as -y s mal 1 0
-ay 1 0 0
L= . o .
B : ©
n-1 n .
-a 1
n
1 0 0|
5) Set
K=HL . (7=}
This gives, by direct calculation,
!S =[b]/ }521 e o o g l<n ] (7_b)

1. It is recalled that the pair (A, f) is completely controllable if and only

ifrank H=n.
2, <x, y>denotes the scalar product of x and y.



where n-r

k== I a, ATH+A"F, =1,2,..0000 (7-c)

tn

k =
~n
It may be noted that the vectors l<r in the first equation of (7-c) satisfy the

recursion equation

.lfr=_° f + Ak r=1,2, ..., n-1 (7-d)

e T AR

The constructive procedure described above is so designed to provide a
"built in" check on the validity of the assumption that the pair (A, f) is completely
controllable [eg., Step 2)]. Moreover, the apparent excess of information
generated in Step 2) {to check controllability it is only necessary to compute lﬁl I
is effectively used in Step 3) to evaluate the characteristic polynomial of A and
thereby avoid the necessity of directly expanding the determinant lé - )xll .

Of course, if one knows a priori that the pair (é,ﬂf:) is completely controllable
then Step 2) can be ignored and the elements a., i=1, ..., nin Step 3) can be
determined alternatively by the more common procedure of evaluating the character-
istic polynomial of A n )
[a- Al=X"- £ o AT @)

1
A possible disadvantage of this alternative, albeit more direct, procedure is that
by it the matrix K defined in (7) can be formally constructed even when the system
(1) is not completely controllable. The possibility of using the set of vectors
',.f] s eeer _l_(n deFinec;in (7-c), as a basis for the canonical (phase-variable) form was
pointed out in {5]. This result has also been described in a recent textbook [6].
In practical applications of the transformation to phase~variable form one

usually needs both K and K™ ] . Using the procedure outlined above, we have

K= ! 9)

Land ~ ~

3. Equations (7-c) coincide with the results given in [5] if the term a K in [5]
is replaced by a,9- This is apparently a typographical error.
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easily computed4 to be

The matrix ﬂ_] has already been computed in Step 2). The expression for L-] is

@ 0 .. 0 1
0 0 1 b
. 1 bn bn-l
L oL : (10)
00 1 b : *
n
0 1 bn bn_] . e b3
..] bn bn-l b3 b2 A
where
b =a
n n
n
b.=a, + I i=m-1, n-2, ...,3,2.

a ....b.,
nH+1=| i

Other Methods for Determining the Matrix K

The general procedure described above for computing the pair (5, E-])
may offer certain advantages in numerical calculation since it does not require the
computation of eigenvalues or eigenvectors and does not involve an explicit evalu-
ation of the determinant |A - )\y . On the other hand, it is of some interest to
study the algebraic structure of the matrix K = K(A, f) in terms of the fundamental
matrix theoretic notions of eigenvalues and eigenvectors. In such a study, the
relative efficiency of numerical computing schemes is not of primary importance.
The result given in [7] showed how, when the pair (é., f) is completely controllable
and A has distinct eigenvalues, the matrix K can be written as

1

K=MM " (1)

~ ~y
where M is a certain modal matrix of A (the columns of M are n linearly independent
column eigenvectors of the matrix A which have been normclized5 in a special way)
and Mv is the Vandermonde matrix of A. In later and independent studies of this
problem, Mufti [8] and Ainsworth and Gunderson [9] generalized the result in [7]

to allow for the possibility of non-distinct eigenvalues.

4. For example, set L‘L_-] =I.

5. In the notation of [7], M=M
column eigenvectors of A, and Bi
malizing factor.

§_] where the columns of M are n linearly independent
s

a non-singular diagonal matrix which acts as a nor-



Relationships with Controllability and Observability

A study of controllability and the structure of K in terms of the spectral
properties of the matrix A, brings to light some facts which may have practical
value. Some of these results have been described in [10]. In addition we
have the following result

Proposition

Let A be a real,constant n x n matrix with at least one
repeated eigenvalue. Let R denote a nonsingular matrix which

transforms A to the diagonal form/}= diag. ()\] . An)

RAR=A, (12)
and let T denote a nonsingular matrix which transforms Ato
the companion form Ao [defined as in (3)]

TVAT=A . (13)
~ ~0

~ A

Then if BV exists l does not exist.

Proof

If R exists, A must possess a total of n linearly indepen-
”~n ~
dent column eigenvectors. On the other hand, if l exists, the
minimal polynomial of A must equal the characteristic polynomial
of A. The latter condition is satisfied if and only if A has no more
than one (within a constant multiplier) column eigenvector corres-
ponding to each set of repeated eigenvalues. |t follows that, when

A has repeated eigenvalues, T cannot exist if R exists.

In the literature on control theory, the concept of complete controllability of
the linear dynamical system (1) is often illustrated by transforming the matrix A
to diagonal or Jordan canonical form and then observing the effect of this
transformation on the vector ’f, [11], [12], [13]. As a complement to this

procedure, the above result has the interesting

Corollary
Suppose the matrix Ain (1) has repeated eigenvalues.

Then, if é is similar to a diagonal marrixj)., the linear dynamical
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system (1) is always uncontrollable for any choice of the vector f.

Moreover, if y=<c,x> is the scalar "output" of (1) then, under

the conditions stated, (1) is always unobservable for any choice

of the vector c.

In light of this fact, qualifying statements such as that found in the footnotes
on pages 350-351 of [ 12] are seen to be unnecessary. The Corollary also shows
that, from the viewpoint of controllability and observability, the case when ﬁ

has repeated eigenvalues actually does exhibit certain special properties.

6. It is recalled that every real, symmetric matrix A is similar to a strictly

diagonal matrixL\.. Thus, the presence of repeated eigenvalues is a necessary

and sufficient condition that (1), with a real symmetric A, be always uncontrollable
— . -~

and unobservable for any choice of the vectors fand c.




oo
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VI. Invariant Hyperplanes for Linear Dynamical Systems

C. D. Johnson

Abstract = In certain problems associated with the control of linear dynamical
systems, the concept of invariant hyperplanes in the system state space plays an
important role [1] - [8]. This paper gives conditions for the existence of in-
variant hyperplanes for linear dynamical systems and describes some geometric
properties of these hyperplanes. In addition, some relationships between invariant
hyperplanes and the concepts of controllability and observability are discussed.

Introduction

An important class of linear dynamical systems, with scalar input and

output, can be described by
i=é>i+u(t)f' (" =d/dt) (1q)
y =<h, x> (1b)

where x = (x] ;oeee s xn) is a real n-vector (the state vector of the system), A is

a real, constant n x n matrix, u(t) is a real, scalar function of time (the system
input or fml)'.\f. and b are real, constant, non-zero n-vectors, and y is a real
scalar (the system output). Many of the mathematical properties associated with
the dynamical system of (1) have convenient geometrical interpretations in the

. n . .
system state space, a euclidean n-space E whose points have coordinates x] poees g X o
—_— n

This paper concerns a question about the existence of a certain property of
the solutions of (1) for the special case when u(t)=0. In particular, the following

question is posed. What conditions are required for the existence of a linear form
<c, x> = 0 (2)
which is invariant along solutions of

x=Ax @)
for arbitrary initial conditions satisfying (2) ? In (2), £=(c], ‘e ,cn) is a real,
constant, nonzero n-vector. In addition to answering this question, this paper gives

a characterization of the stability of (2) along solutions of (3) and shows relationships

This work was supported,in part,by the National Aeronautics and Space Administration
under Contract NAS8-11231 and Grant NsG-381.

The author is with the Dept. of Electrical Engineering, University of Alabama,
Huntsville, Ala.

]The notation <x, y> denotes the inner product of x and y.
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between the form (2) and the real eigenvalues and eigenvectors of A. . Finally,
a solution is given for certain inverse problem associated with (2) and there is
presented, for a special class of problems, a simple geometric interpretation of

Kalman's concepts of controllability and observability.

The linear form (2) can be associated with an (n-1)~dimensional hyperplane
in the state space E". This hyperplane has the property that if <c, x(0)>= 0 then
<c, x(t) > =0 for all t>0 when x(t) is a solution of (3). In the following, a linear

form (2) having the above property is referred to as an invariant hyperplane Zfof (3).

if mm oarkiEe
i |81

~
A IRER IR S |

Q.

i

| T £ {2\ Am
i T Yy

x(t) of (3) satisfies <0(>0) for <c, x(t)>>0
<c, % (t) > = v (4)
~ (>0(<0)  for <g, x(1)><0

then the invariant hyperplane is called stable (unstable).
Let the eigenvalues of A be )\] P oeens )\n and lefsl peees @ be a correspond-

ing set of column eigenvectors. It is recalled that the column eigenvectors of A

are nonzero and satisfy

éai=>\igi i=1,...,n). (5)
It is further recalled that corresponding to each eigenvalue >\i, i=1, ..., n, there

/
is an associated nonzero row eigenvector B. which satisfies
— i

B A= X B (' denotes transpose). (6)

-~ I Al

Results

The conditions for the existence of invariant hyperplanes of (3) are summarized

in the following.

Theorem i

Let é be a real, constant n x n matrix and let the real, nonzero eigenvalues
of A be denoted by )\], ceo g )\m; m < n. Then, corresponding to each eigenvalue
A (j=1, ..., m), there exists a real, constant, nonzero n-vector ci satisfying

I <

A’ci=>\.<:. i=l .., m @)
el B Rl

and such that
<c., x()>=0. (8)
NI ~r



along every solution of X = Ax which satisfies
< x0)>=0 (9

Moreover, ci" is a row eigenvector corresponding to )\i and the invariant
-~

hypemplane

H = (xf<e x>=0 (10)

is stable (unstable), in the sense of (4), if )\i< 0 (0.
Proof: Let B denote the n x n matrix whose columns are

r 12

c, Ac,
=~ L2

E,...,én_ls. a1

H

Then, from repeated differentiation of (2) it may be seen that (8) is satisfied
along solutions of (3) for each x(0) satisfying (9), if and only if rank B= 1. This

latter condition is satisfied if and only if
A c=pe (12)

for some real scalar e It follows from (6) that (12) has real, nonzero solutions

0 = X\, ¢, = g, corresponding to each real nonzero eigenvalue X, j=1, ... , m.

l I~ o~ |

Setting Ei =< ci, x>, c, = Bi, the derivative of ¢, along an arbitrary solution of
ot Bl B | B

(3) is found to be

AL VI () SR S DY (13)
—— i

It follows that the invariant hyperplane ‘H’i = { x,< |3i, x> =0} is stable (unstable)
if )‘i <o(>0j=1, ..., m

Corollary

Let o P9 be the set of real column eigenvectors of A and let ¢

TS 1’
.+. , & _be the set of normal vectors associated with the corresponding m invariant
m
hyperplanes of x = Ax. Then the vectors c,, a, satisfy the following orthogonality
~oov ~1 ~i
equation

<Si13 >=0;>\i7'L_'Ak(irk=]l---rm)- (]4)
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Proof: The proof follows immediately from the well-known result that the row

eigenvector corresponding to any eigenvalue is orthogonal to the column

eigenvector corresponding to any different eigenvalue,

Remarks

1) If A has repeated real eigenvalues, it is sometimes, but not always,
possible to find more than one linearly independent row eigenvector corresponding
to the same (nondistinct) eigenvalue. Since any linear combination of such row
eigenvectors is also a row eigenvector, it follows that in such a case an infinitude
of distinct invariant hyperplanes will be associated with the same (nondistinct)
eigenvalue.

2) The assumption that the real X\ are nonzero (j =1, ... , m) assures that
(13) has a unique equilibrium state E(f);o. In this case, the corresponding in-
variant hyperplanes ‘Hi always pass through the origin x = 0. In the case of a distinct
zero eigenvalue the corresponding vector ¢ still satisfies (7) but the equilibrium states
of (13) are then defined by

£= <c, x>=2z (15)

where z is an arbitrary real scalar constant. Thus, to each distinct zero eigenvalue
there corresponds an infinite number of parallel invariant hyperplanes (15). The

parallel hyperplanes corresponding to a zero eigenvalue are neutrally stable in the

sense that along solutions of (3)
<ci' ’>"<'(t) >=0 (16)
for all values of <$m, 5(f) >,

3) The Corollary shows that the eigenvector s corresponding to the real

eigenvalue )\k, lies on the intersection of the set of invariant hyperplanes
ﬂi ={ xl<ci, x> =0} where ci =Bi(>\,), }x.#)\k, irk=1, ..., m Incertain
~jt~ ~i <0

special cases, this result leads to a useful geometric interpretation of eigenvectors.
Consider, for example, the case n = 3 and suppose that the corresponding three eigen-
values A] ; )\2, )\3 are all real, distinct, and nonzero. In this case there are three
distinct invariant hyperplanes which pass through the origin x= 0. The pairwise inter-
sections between these three hyperplanes generate three lines that pass through the
origin x= 0 and are collinear with the three eigenvectors o, Ay and as. This result

is illustrated in Figure 1.



Figure 1 - Showing the eigenvectors g

r Gor 9q lying on the intersections

]
of the invariant hyperplanes IH’], #2, #3.
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4) From (13) it is clear that in the state space E" the integral curves of
the system (3) cannot cross over2 the invariant hypermplanes of that system. Thus,
the set of invariant hyperplanes of X = Ax define boundaries of n-dimensional convex
subsets of the state space which are invariant for the corresponding solution x(t).
This fact, together with the fact that an arbitrary solution x(t) always monotonically
approaches (recedes from)'3 each stable (unsfable)'}(, is useful in establishing relative

bounds on components of x(t).
~

An Inverse Problem

In this section the following inverse problem is considered: Find a real,

constant n-vector y = (y] Poeee s yn) such that the hyperplane
'jrf={’>v<'<s, x> =0} (17)
is invariant for the linear dynamical system described by

X = éx+<y,x>F (18)
where < andf‘are real, constant n-vectors, and ’,A‘., is a real, constant n x n matrix.
This problem differs from the previous problem in that the hyperplane (17), (i.e.,
the vector ¢) is assumed to be specified a priori.

From the results of Theorem 1, ii is clear that y must be chosen so that

1) the matrix

A+fy (19
has at least one real eigenvalue, and
2) one of the invariant hyperpianes of (18), corresponding to one of the

real eigenvalues of (19), is defined by (i7).

A vector y which has the required properties is given in Theorem 2,

Theorem 2

Let A be a real, constant n x n matrix, and let y, f, and ¢ be real, constant

~ A ~

n-vectors. Then, the hypemplane

M =1 xf<c, x>=0] (20)

is invariant for the linear dynamical system

2 More precisely, if x(O)*ﬂ then x(f) cannot enter ﬂl in finite time.
3.Here, the "distance" from x(t) toHis taken as ”c” <c, x(1)>.



X =Ax+<y, x>F 21)
if ysatisfies
y =<¢, B A"+ De 22)

where k is an arbitrary, real scalar constant.
Moreover, for the system of (21) and (22), the invariant hyperplane (20) is
stable (unstable), in the sense of (4), if k< 0 (>0).
Proof: Using the notat'on ¢ = <c, x>, the derivative d ¢/dt along an arbit-
tary solution of (21) is computed to be
-—jf— = <c, (é +iy')x ) >
—kpH<e, F><ly-<c, B A TD ], x() > (29)

The last term on the right of (23) vanishes when

y =<c, f>_] (-A" +KI) ¢ (24)
and in this case ~
d
__Ldt =kg (25)

along an arbitrary solution of (21). This completes the proof of Theorem 2,

Remarks
Equation (18) defines the vector x in terms of the two components Ax and
<y, x>f. For the special case <c, >=0, the component <y, x >f is always in the
l:yp:;rp.'lone <S’ L(> =0. It follows that, for this special cgse:' <e, x> = 0 isan in-
variant hyperplane of (18) if and only if <c, x>= 0 is an invariant hyperplane

of X = Ax. Under this condition, the choice of the vector y is immaterial.

Relation with Controllability and Observability

The linear dynamical system (1) is said to be completely controlliable [9] - [12]
in the state space E" if and only if, for each finite pair of states (50, 35]_) € En,
there exists a finite interval [Q, T] and a control u = ¢ (t; Xor ‘?'(T)' 0<t<T, such
that if 5(0) =% then x(T) =3<Ta|ong the corresponding solution of (1). In a like
manner, the linear dynamical system (1) is said to be completely observable [9]~[12]
in the state space E" if and only if, for each finite output y(t), 0 <t <T>0, which

satisfies (1) [with u(t)=0], there corresponds a unique initial state x(0).
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Let P be the n x n matrix whose columns are i, Af, Af, ..., and An'_ ]j, and

~

~ o~

let R be the n x n matrix whose columns are h, A’ h, A""h, ..., and é'n-]h.
Then a necessary and sufficient condition for the linear dynamical system (1) to
be completely controllable (observable) is that rank P=n (rank R= n) {10]. In
other words, the system (1) becomes uncontrollable (unobservable) if and only if
the vector f(h) lies in a proper A-invariant (A" -invariant) subspc:ce4 of E" with
dimension less than n.

The invariant hyperplanes discussed in Section Il are (n-1)- dimensional
A-invariant subspaces of E". It follows from the previous remarks that the linear
dynamical system (1) becomes uncontrollable, in particular, whenever f lies in
one or more of the invariant hyperplanes of (3). Suppose, for example, that
<c., £>=0 for some'\c':i which satisfies (7). Then, the derivative of ¢ =<'Ei' x>

along an arbitrary solution of (1a) is

d
—a A 28)

which shows that, irrespective of the choice of u(t), the integral curve x(t)
cannot cross over the hyperplane <£i, x>=0.

An important connection between the A-invariant and A’-invariant sub-
spaces of E" is summarized in the following well-known result of matrix theory:

If S is an A-invariant subspace of E" then the orthogonal complement of S is an

. PO .
A’invariant subspace of E'. Since the real column (row) eigenvectors of A are

one-dimensional A-invariant (é’—invarianf) subspaces, this result shows that

1) each real row eigenvector of A is orthogonal to an (n-1)-dimensional
A-invariant subspace, and
P d

2) each real column eigenvector of A is orthogonal to an (n-1)-dimensional
A’-invariant subspace. The first of these facts is recognized as an alternative
proof of the existence of the invariant hyperplanes described in Section I}, The
second fact shows that the linear dynamical system (1) becomes unobservable, in

particular, whenever the vector h lies in one or more of the (n-1)-dimensional
~

4. A subspace ScE" is said to be A-invariant if x€ S implies Axe S for all
X € S.



hyperplanes orthogonal to the real column eigenvectors of A.

In the state space En, the union of all A-invariant subspaces with dimension
less than n is the set F(é) of all vectors f for which the system (1) is uncontrollable.
Likewise, the union of all A’-invariant subspaces with dimension less than n is the
set H(é) of all vectors h for which the system (1) is unobservable. The case when
either of the sets F(A) or H(A) is n-dimensional is particularly important since, in

that event, both F(A),H(A) are n-dimensional and the system (1) is always un-

controllable and unobservable irrespective of the choice of the vectors f and h!

. This degenerate condition occurs if and only if rank P<n for arbitrary f. In other
words, if and only if there exist real scalars rgr Tyr voe v s (ki n-1), not all

zero, such that

2 k
r0£+r]é+rzé +...+rké =0. (27)
An n x n matrix A which satisfies (27), with k< n - 1, must necessari|y5 possess

repeated eigenvalues and is said to be derogatory. That is, the minimal polynomial
of A is of lower degree than the characteristic polynomial. The nature of the
geometric structure that causes this degenerate condition can be illustrated by con-
sidering the special case n=2. For that case, the only proper A=invariant (A’-in-
variant) subspaces of dimension less than n are the real column (row) eigenvectors
of A. Thus, the second-order system (1) is uncontrollable (unobservable) if and
only if the vector’f(b) is collinear with one of the real column (row) eigenvectors
of A. If the 2 x 2 matrix A ;ég is derogatory, it follows from (27) that the two
eigenvalues of A must be real and repeated, )\] = )\2= A=#£0, and A must have
the diagonal form

A= A £ 0. (28)
It is readily verified from (5) and (6) that the column and row eigenvectors of
(28) are nondistinct and can be chosen as any vector in E2. That is, the state
space portrait of (3), with A given by (28) consists of the family of all straight
lines that pass through the origin x=0. It follows that every vector f€ E2 (be E2)

5. The presence of repeated eigenvalues is a necessary but not sufficient con-
dition for A to be derogatory. A necessary and sufficient condition for A to be
derogafory is that there exists more than one linearly independent column eigen-
vector corresponding to the same (repeated) eigenvalue.
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is collinear with one of the column (row) eigenvectors of A.
. . . . n
In general, the proper A-invariant and A’~invariant subspaces of E appear
the loss of controllability and/or

=1 y i ) O

with a variety of dimensions, ~ For this reason
observability of the general nth-order system (1) cannot always be characterized
solely in terms of the particular one-dimensional and (n - 1)-dimensional invariant
subspaces previously discussed. It is possible, however, to give such characteriza-
tions for the special cases n =2 and n = 3 since, for those two cases, the real eigen-
vectors and their respective orthogonal complements are the only invariont subspaces
of interest, These characterizations, which follow immediately from the results
previously described, may be summarized as follows.

Theorem 3

The second order, n =2, linear dynamical system (1) is:

1) always completely controllable and completely observable, irrespective
of the choices of the vectors f and h, if and only if A has no real eigenvalues
(i.e., if and only if the system is "underdamped").

2) uncontrollable (unobservable) if and only if the vector i(lz) is collinear
with a real column (row) eigenvector of A.

3) always uncontrollable and unobservable irrespective of the choices of
the vectors f and h, if and only if A = rol for some real scalar constant o
Theorem 4

The third order, n =3, linear dynamical system (1) is:

1) always uncontrollable (unobservable) for some choices of the vector f(h),

2) uncontrollable (unobservable) if and only if the vecfori(b) is either collinear
with a real column (row) eigenvector of A or lies on a 2-dimensional plane that is
orthogonal to one of the real row (column) eigenvectors of A.

3) always uncontrollable and unobservable, irrespective of the choices of

the vectors f and h, if and only if either

A —r]é+r I
or
A=l

6. For example, there is a real 2-dimensional A-invariant subspace and a real
2-dimensional A’-invariant subspace associated with each distinct pair of complex-~
conjugate eigenvalues of A,



for some real scalar constants o’ 11
In both Theorem 3 and Theorem 4, the absence of repeated eigenvalues is

sufficient to guarantee the nonexistence of the degenerate condition 3).

Conclusion :

In this paper, the set of (n-1) -dimensional hyperplanes (2) that are invariant
along solutions of (3) have been identified as the orthogonal complements of the real
row eigenvectors of A. A stability property of these hyperplanes, along solutions
of (3), has been defined and characterized in terms of the associated real eigenvalues
of A. In addition, some geometric relationships between the concepts of controllability
and observability and the real column and row eigenvectors of A have been described.
By means of these relationships, the notions of controllability and observability for
second and third-order linear dynamical systems (1) can be completely explained

in terms of simple geometric characterizations.
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VIil. Optimal Control With Quadratic Performance Index And Fixed Terminal Time

C. D. Johnson+ J. E. GibsonH

Summarx

The conventional solution for the optimal control of a linear stationary
regulator with quadratic performance index and fixed terminal time leads to a
linear feedback law with time varying gain coefficients [1] .] In addition to
the usual disadvantages of time variable controllers, these time varying gain
coefficients approach infinity as the specified terminal time is approached.

in the present paper, it is shown that the optimal control for the above
problem can be expressed as a time invariant nonlinear feedback law. Certain
parameters in the nonlinear feedback law are functions of the initial time and
initial state of the system. The conventional time varying linear feedback law
can be obtained directly from the time invariant nonlinear feedback law.

The results of the present paper are applicable to a more general class
of optimal control problems involving linear and nonlinear systems. Two examples

are given to illustrate the method.

1. Statement of the Problem

The problem is to find a control u(t) which minimizes the funcfional2

J[u] = -2]— ffT [<x({t), Qx{t)> + 2,2 {t) 1 dt (1
o

* Electrical Engineering Department, University of Alabama in Huntsville,
Huntsville, Alabama. This work was supported in part by the National Aeronautics
and Space Administration under Grant No. NsG-381 and Contract No. NAS8-11231.

+
Control and Information Systems Laboratory, School of Electrical Engineering,
Purdue University, Lafayette, Indiana.

Numbers in brackets designate references at end of paper.

2

<x,y>is the scalar product of x and y.
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subject to the following conditions:

x = Ax +ult)f (- =d/dt) @)
xt) =x (3)
x(T) =0 (T is fixed) (4)

In (1), Q is a symmetric, positive semi~definite constant matrix and c is a non~zero
scalar constant. In (2), x = (x] P xn) is the state vector of the plant, A is an
(n x n) constant matrix, f = (f] r ey fn) is a constant n-vector and uft) is the scalar
control function. It is assumed that u(t) is piecewise continuous but otherwise
unrestricted. It is further assumed that the pair (A, f) is controllable. Then as

shown in [2], there is no loss of generality in assuming that A, f have the canonical

form
1 0 . 0
0 0 1
A= : . - . 6
0 . . . 0 1 0
La] 9, ag . . . cn 1

The optimal control u for the above problem can, in principle, be found
by straightforward application of the Hamilton~Jacobi theory. Since the details
of the Hamilton-Jacobi formulation of this problem have already been given in

[1] we will only summarize the results.



2. Form of the Optimal Control Law

Let v° = ¢° (x,t, T) be an optimal control law, and let

Vix, t,T) = J[u°]; xt)=x, t =t. ©)

Then it can be shown [ 1] that V satisfies the Hamilton~Jacobi equation

-2
BerteD g cqvig, 1, 1), Ax> -5 <PVt T, 657 +2<x,Qx>=0 ()
where
_ (Vv Vv
vV = ax]'“"é?‘)' ®)
n
Further, the optimal control law is given by
o -2
¢ (flfl T) =cC <'Yv(§lfl T)I £>- (9)

The control law (9) may be determined by solving (7) directly or, alternately,
by solving for the characteristic strips of (7). The direct solution of (7) is discussed
below. The method of characteristic strips, which in this particular case leads

to Pontryagin's canonical equations, is discussed in Appendix 1.

3. Solution of the Hamilton-Jacobi Equation

The term 3V/at in (7) is related to Pontryagin's Hamiltonian function H by

the relation

_g¥(>,g(r),h L Hx(®), - YV, 1, T), 1) (10)

which holds along optimal trajectories x(t). For the problem (1) - (4) it is well

known that the Hamiltonian (10) is constant along optimal trajectories.
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Hix(t), - YV, t,7), 1) = B ¢, <t<T) (11)
(B = constant)

From (10) and (11), it is clear that a complete integrals of (7) must be linear in t

and of the form
V=U(>£,a],°..,an_], B) + Bt + a (12)

where B is givenby (11). The a. and B in (12) are n+1 integration constants

(constants of motion) which can be evaluated from the specified initial and terminal

states (3), (4)04 Thus

a =alx ,t ,T) (i=1,...,n-1) (13

B =Pty T . (14)

Moreover, it can be shown [see Appendix 2] that along optimal trajectories

there are an additional n  constants of motion given by

A4 =k =1, ..0.,n-1)

Ba, i
]

Il

g%/- kn (ki =constant; j =1, ..., n) (15)

It is at this point that the present method of solution differs from
conventional methods. In the conventional methods of solving the problem (1) - (4);
(11, [31, [41, [5]1, [6], [7], 18], [9], [10], it is assumed that the solution to (7)

is a positive definite (or semi-definite) quadratic form5

3 See Appendix 2.

4 It should be noted from (6) that two boundary conditions for (12) are V(0,t,T) =0,
Wt <t <T and V(x, T,T) = +o, ¥x # 0.

3 In [7], [8}, [9], a solution is assumed in the form of a finite series with

time variable coefficients.



V=2 <x, M, T)x> (16)

N —

where the elements of the (n x n) matrix M are functions of time mii = mii(f, T)
i,i=1, ..., n. Upon substituting (16) into (7) the mii(f, T) are determined

as the solution to an ordinary nonlinear matrix differential equation of the Riceati
type. By this means, the assumed solution (16) leads to a time varying linear feedback

control law of the form
¢°(§ItlT) = <Y(“IT)I"5> (]7)

where Z(f, T = (y] €, Ty ccoy 7, (t, T)) is a time varying gain vector.
A well known practical disadvantage of the solution (17) is that I v, T)I )
ast—>T. )
In the present method of solving the problem (1) = (4), the solution to
(7) is sought in the form of a complete integral of the type (12)¢,7 By this means,

the optimal control (9) is obtained as a time invariant nonlinear feedback law of

the form
o _ .0
u = ¢ (5’ )-So'fo' T) (18)
where o -2
p =c < -V'L) ().('l ?Soltol T)lf>° (19)

It is remarked that in some special cases it may be possible to obtain the expression
(19) without solving for (12) explicitly.

tn (19) the initial conditions Xo to are arbitrary for to <T. Thus, the
nonlinear control law (19) can easily be transformed to the conventional time

varying linear control law (17) by setting X =)$(t) and o=t in (]‘5’)..8 This

6 Rekasius [10] has proposed a method for avoiding the infinite gain associated with
(17) by expressing (17) in the alternate form ¢° (’.S’f’T) =<n,x> +}//(I',§°,T) where
n = constant. -

7 Complete integrals of the form (12) may differ considerably from the quadratic
form (16) [see Example 1 below].

8 1t is for this reason that (19) is termed a control "law". By definition, a control
law should depend only on the instantaneous values of x(t), t.
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latter step illustrates the relationship between the two alternate forms of
solutions (17) and (19). That is, in the solution (19) the time varying portion
of (17) is replaced by the constants of motion (13), (]4-).,9 The control
functions (17) and (19) are mathematically equivalent solutions which differ
only in functional form.

In the problem (1) = (4), if the fixed terminal time T is infinite (or,
equivalently, if T is unrestricted) then B in (11) becomes zero and the optimal

control (9) reduces to a time invariant linear feedback law of the form [11]
o
¢ () =<y, x> (20)

where y = (y,, «.., v_) is a constant n-vector,
A variation of the problem (1) - (4) is obtained by fixing the elapsed
timet =T - toe In this case, one may arbitrarily set i = 0, T=7and (19)

contains one less parameter.

4. Comparison of Alternate Solutions

The conventional time varying linear feedback law (17) is illustrated
in Figure 1. This form of solution has the advantage of being independent of
the initial state §(fo)° That is, the control u°(>‘5, t, T) is always optimal with
respect to any instantaneous state >‘5(1'), (t <T). A practical disadvantage of this
solution is the physical unrealizability and extreme sensitivity of the feedback
controller as t - T and I r, T)I - o,

The fime-invariar:r, nonlinear feedback law (19) is illustrated in Figure 2.
The switches s)r s, represent devices which, when activated, will sample and
hold the initial conditions >_5(i'°), fO, An apparent disadvantage of this solution
is the fact that the control uo(i(’, X r bor T) is optimal only for states x(t) lying

on the optimal trajectory passing through the initial state >_5(f°). Thus if, after

? Note that the reverse transformation [from (17) to (19)] requires a priori
knowledge of the constants of motion.
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sampling the initial conditions >_5(f°), to, the actual state x(t) should deviate

from the theoretical optimum trajectory (for instance, due to momentary external
disturbances) then the control Uo(§' X b T) would not continue to be optimal
with respect fo the actual state x(t). However, if such a disturbance should
occur, the optimal control for the disturbed state x(t) can be obtained by
momentarily activating the sample and hold devices 5 and Sp° By this means,
the disturbed valuesx(t),t become the new initial conditions §(t°), fo., This
technique allows the step-wise readjustment of the nonlinear feedback law to
account for any deviations of x{) from the original optimal trajectory. 0 in

the limit, as 5 and 5 sample x(t) and t continuously, the control u°(§, X0 tor T
becomes u°(§, t, T) and the alternate solutions of Figures 1 and 2 become identical.
By employing this duai mode property of the soiution (19) it may be possibie to
eliminate some of the practical disadvantages of the conventional solution (17).

5. Example 1 = A Linear Regulator of First Order
11

As a special case of (1), (2), let

x = -x +ult) (x =scalar) 2n
Jo) =5 ffz )2 + o)D) o (22)
with
x(to) =%,
xM) =0 (T =fixed). (23)

The Hamilton-Jacobi equation (7) is

v av  1.,v2 1 2

ﬁ—X'é—x—'z'(a) +7X =0 (24)

10 The readjustment of the nonlinear control law is equivalent to a re-evaluation
of the constants of motion (13), (14) for the disturbed state x(t). This may be
viewed as a mechanization of the Principle of Optimality [12].

1 This example has been considered by Rekasius [10].



and a complete integral of (24) is of the form
V =9kx,B)+ Bt +a. (25)

It can be verified that a complete integral of (24) is

Vgl Ex /2P ) £ \/% Ln (VZ x + V262 + B) ) +Bt +a (26)

where

a = q(xo, fo’ T
B = B(xol rol T)-
. .12
From (19) and (23) the optimal control is
6% =+x ~(sgn x) V262 +p)  (san 0 € 0). (27)
Substituting (27) in (21), the expression for B is found to be
2 2
=x_ esch” [VZ (T-t)]. (28)

Therefore, the optimal control (27) can be written

¢>°(x,x ,t,T) = +x =(sgn x) \/2X2 + 2x2 csch2 [VZ(T -t )] (29)
%50 o o

The field of trajectories for the plant {21} with control (29) is illustrated in Figure 3.
A plot of the constant of motion B given by (28) is shown in Figure 4. The contours
B = constant in Figure 4 may be interpreted as optimal trajectories. If T = (or,

if T = unrestricted) then B in (28) becomes zero and the optimal control (29) becomes

12 Since (21) is only first order, this result can be obtained directly from (24)
by observing that ¢° = - 9V/dx.
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$°(x) few” (- V2)x. (30)

=

The conventional time varying linear control law (17) can be obtained

directly from (29) by setting X, =%, fo =t in (29). The result is

¢°,t, ) = [1-/Z ctoh [VZ (T -1)] 1x. (31)

It may be noted in (31) that cinh [VZ(T-1)] >oast > T.
The expressions for the constants of motion provide a simple method for
deriving expressions for x(t). In the present example, (28) yields directly the

expression

_ sinh [ V2 (T - 1)]
x(F) = Xo sinh [ V2 (T - fo)] ’ 32)

6. Example 2 = A More General First Order Problem

An advantage of the complete integral method of solution is that, in
principle, it may be applied to a more general class of problems. Consider,

for example, the problem of finding a control u(t) which minimizes the functional
Jul = £ 1abt) + FoP @) 1ot (33)
)

subject to the following conditions:

x = f(x) + ub(x),(x= scalar) (34)
x(to) =X
x(T) =0 (T = fixed) (35)

In (33), g(x) is a non-negative definite continuous function of x and ¢ is a non=

zero scalar constant. In (34) f(x) and b{x) are continuous functions of the scalar x.



It is assumed that u(t) is piecewise continuous but otherwise unrestricted.
Then, using the complete integral method described above, it is found that

the optimal control u® (if it exists) can be expressed as

f 2 -2 2 ‘
Pl ggrter D = - - S A1 + < 156017 L9k + ) . @6)
The 8 = B(xo, to’ T) in (36) is a constant of motion which can be evaluated from
the initial and terminal conditions (35).

If the terminal time T in (35) is unrestricted, then B is zero and (36)

becomes

f 2, -2 '

P = - 1 - b S1i6017 + <P b1 960.67)
This method of solution can, in principle, be extended to problems of

higher order. In the case of higher order problems, it may be necessary to

evaluate several of the constants of motion (13), (14), (15).

7. Conclusions
The conventional solution for the optimal control of a linear regulator
with quadratic performance index and fixed terminal time leads to a time varying
linear control law which is physically unrealizable. It has been shown that the
optimal control for this problem can be expressed as a time invariant nonlinear
feedback law. Certain parameters in the nonlinear law are functions of the
initial conditions §(fo), foe
The time invariant nonlinear control law can be transformed to the
conventional time variable control law by setting §(to) = x(t) and =t By
this means, it may be possible to design a physically realizable optimal controller
which retains some of the desirable features of the conventional linear control

law. The method of solution used here is applicable, in principle, to a more

general class of optimal control problems.
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The purpose of the present paper is to point out the possibility of
employing the complete integral method in the solution of certain problems
of optimal control. Although the principle is relatively simple, application
of this method is complicated by the practical difficulties of finding complete

integrals.

8. Appendix 1 = Characteristic Strips of the Hamilton~Jacobi Equation

The equations of the characteristic strips of the Hamilton-Jacobi

equation (7) are [13]

x =Ax + c_2 <p,f>f
p=Qx-A'p (' denotes transpose) (38)
G=0 (39)
where
p=-7YV
Al
q ot *

Equations (38) are equivalent to Pontryagin's canonical equations [14] and (39)
is equivalent to the relation % = 0.

When A, { are of the canonical form (5), the first of equations (38)

can be written as the single nth order differential equation
n -2
s x; = <g, m(s) >xy =< P, =0 (40)
th

and the set of equations (38) can be written as one 2n'" order linear differential

equation of the form
2n

s X

1

- " <a, ) + ) xlBx, + ()" < <a), (@ +Cag)nls)>x, =0 (41)



where dkx

k
X =
! dt

a= (c], ...,an)

_]).

E(s) =(1, s, 52, ceer "

It may be noted that the 2n roots of the characteristic equation of (41) occur
in pairs (A, =M. Equation (40) represents the differential equation of the
optimally conirolled plant with u®l) = c-2 Po(t). Equation (41) may be

th

considered as a 2n'" order differential equation which is obtained by taking

n successive derivatives of (40).
The order of (41) can be reduced to n by taking n successive first

integrals of (41) to obtain

e(x],sx],...,snx],c],...,cn)=0 (42)

where Cqr +-+s € aren constants of integration. Equations (40) and (42) may
now be solved jointly to obtain

-2
W =c P, = ¢°(§, Cyr vnes cn). (43)

The constants of integration ci (i =1, ..., n) are chosen to satisfy the specified
boundary conditions &(to) =X, x(T) = 0. By this means, there is obtained

T) Gi=1,...,n). (44
However, since any state x(t) along an optimal trajectory can be considered as

the instantaneous initial state f(fo)’ the constants of integration in (44) can be

written as
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ci =ci(§, t, T Gi=1, ..., n). (45)
In this way, the control function (43) can be expressed in the form

v’ = ¢, 1, T) (46)

which leads to the conventional time varying linear control law (17).

9. Appendix 2 - Complete Integrals of the Hamilton-Jacobi Equation and
Constants of Motion Along Optimal Trajectories

The Hamilton-Jacobi equation can be written as [1]

Yl -RVs b 0%t -3V =0 @)

where H(x, Prts u°(§, i, B)) is Ponfryagin's Hamiltonion function [ 14] and

p ==YV is the so-called conjugate variable.

) If x is an n-vector then, following Lagrange, a complete integral of (47)
is defined [13] as any solution of (47) which contains n essential constants of

integration a, =1, ..., n). Thus a complete integral of (47) is of the form 13

V=V(x],..,,xn,t,al,...,an) (48)

The 2n +1 canonical or characteristic strip equations associated with (47)

are [13]

8 e, e, t, 00) . P aHen), pt), 1, °®) @9)

dt . ! dt ox.
%i " i=1,...,n
and .
dqt) _ aH(x(), p®), t,u°E)) _av
_df = _a_T’.‘. B ; q = -B-T . (50)

13 Since V does not appear explicitly in (47), it is always possible to append on
arbitrary additive constant to a solution (48).
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It will now be shown that, if V is sufficiently continuous in its arguments, the

expressions

9 (i=l,...,n)‘ (1)

are constants of motion (first integrals) along solutions of the canonical equations. 14

The time derivative of (51) is

d ,oVv aVv Vv k
dt ‘9a.’  Btoa ¥ Z_ ox da. dt ° (52)
i i k=1 ki
If
32V aZV
araai aciat
and
2 2
v v .
da.0x,  0Ox, da, k=1, ...,n) (53
i k k
then (47) yields
2 n 2
eV __ % a3V 54
araal k=1 apk axkaa|
Substituting (54) in (52) there is obtained
4 oav, o 1oy P o, 55)
dt 'da k=1 8xkac1i dt apk

It is clear from (55) that along solutions of (49)

g—;/. = constant = ki i=1,...,n). (56)
i

14 This result is well known in classical mechanics [15].
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From the expressions P =-_gxl (x], eer Xpr e ee an) and
i
%/_(x], s X Fr Ayr ovees c'n) = ki' there is obtained
i

x =xi(t, Quroeeer @y k], ...,kn)
(57)
i=1,...,n)

T
]

pi(f, ayr e Qs k], cees kn)

which constitute a general solution of the 2ncanonical equations (49). The 2n

constants a., |<i (i=1i, ..., n) are evaluated from the specified initial and

terminal conditions of (57).
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vir. On a Problem of Letov in Optimal Control

C. D. JOHNSON

Electrical Engineering Depariment,
University of Alabamae,
Huntsville Center, Huntsville, Ala.

W. M. WONHAM

Center for Control Theory,
RIAS, Baltimore, Md.

In a series of papers [1, 2],2 A. M. Letov discussed an optimal regulator problem for a
linear plant with bounded control variable and quadratic performance index. This

problem was also discussed by Chang [3).

Krasovskii and Letov observed later (4]

that the solution proposed in [1, 2, and 3] may be correct only for special choices of the
initial value of the state vector. In the present note, further aspects of the solution in the
general case are described and three examples are given. The possible existence of a
regime of unsaturated-nonlinear optimal control is demonstrated. The presence of this
regime in the optimal control law was apparently overlooked in [1-4).

Statement of the Problem

THE problem is to find a continuous control function
u = u(t) which minimizes the functional?

Jlu] = %for [{x(), Qx(t)) + cru(t)]dt (1)
subject to the following conditions:
x= Ax+uf (= d/d) (2)
x(0) = xo (3)
x(T) =10 (T is unrestricted) (4)
bl =1 0=tsT) (5)

In (1), Q is a positive semidefinite symmetric constant matrix
and ¢ is a scalar constant. In(2), x = (z, ..., z,) i8 the state
vector of the plant, A is an (n X n) constant matrix, f =
(fi, . « - f.) i8 & constant n-vector and u is the scalar control
function. It is assumed that the pair (A, f) is controllable; that
is, the vectors

f, A ..., A% (6)

are linearly independent. Then, as shown in [5], there is no loss
of generality in assuming that A, f have the form

0 1 o . . . 0 0
0 0 1 0
A = . , F=1.1 (D
o . . . . 0 1 0
a .. .. a, 1

It is further assumed that the state x = 0 is reachable from x,
using an admissible control (5). Then, if Q is appropriately re-
stricted, an optimal control u exists [9] and can in principle be
found by straightforward application of Pontryagin’s principle
or dynamic programming. Since the details have already been
givenin [2 and 4] we first summarize the results.

Form of the Optimal Control Law
1 Letu? = ¢°%x)be an optimal control law, and let

V(x) = J[u], x(0) = x (8)

! This research was supported in part at the respective institutions
by the National Aeronautics and Space Administration under Grant
No. N3G-381 (and Contract No. NAS 8-11231) and Grant No.
NASw-845. .

2 Numbers in brackets designate References at end of paper.

3 {x, y) is the scalar product of x and y.

_We shall assume that ¥ is continuously differentiable in x.
Then V satisfies the Hamilton-Jacobi equation

(VV(n), Ax) — ‘7— (VVe), B2 + %(., Qx) = 0,

i e~ ®OV(x), D] 21 (9a)
and

(VV(x), Ax) — (W V(x), B + % + 5 (% Qx) = 0,

if e vV, Hl =1 (9)

In(9)
124 oV
vW={—, ..., —
( on’ bx,.) a0
Further, the optimal control is given by
P(x) = sat[c~{—VV(x), /)] (11)
where
{y, lyl =1
sat y = (12)
sgny, lyl 21

Equation (9a) holds in the set of states x where the control is
unsaturated (i.e., |qb°(x)[ < 1)and (9b) holds in the set of states x
where the control is saturated (i.e., |¢“(x)] = 1). Consider first
the set where (9a) is satisfied. In the absence of the constraint
(5), the restriction [¢=*(WV{(x), f)} = 1 disappears and (9a) holds
at all states x. For this case it is well known [6] that the solution
of (9a)is

V(x) = %(x, Mx) (13)

where the matrix M is symmetric, positive definite, and uniquely
defined by

A'M+MA —cMIHFM+ Q =0
(’ denotes transpose) (14)

Further, the optimal control law is linear and is given by
éu(x) = c=VV(x), ) = (1, x) (15)
where
Y = —cTIMf (16)

2 To introduce the constraint lul = 1 we proceed as in [5].
Let L be the set of states x; such that, if x(0) = xpand if © = ¢(x)
in (2), then [¢,[x(#)]| S 1fort 2 0. Inother words, L is the set of
initial states for which the constraint |u| < 1 is satisfied along the
corresponding trajectories when the control law is ¢,(x). It is
clear that if x(0) € L then x(¢) € L for ¢ = 0; and it can be verified
that L is an n-dimensional, convex, and in general proper subset
of the set of states x defined by the inequality
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[pe(x)l =1 an
"Obviously L contains the origin x = 0. It follows that
¢f’(x) = ¢;(x), when xelL (18)

In general ¢%x) is not given by (18) in the entire strip (17);
the set L coincides with the strip (17) only for special choices of
the matrices A and Q (see section, “Example 3""). Moreover
@%(x) is not given, in general, by the simple rule

¢%(x) = sat dp(x), forall x (19)

The control law (19) is the solution (in general, incorrect) pro-
posed in [1-3].

The set L in the largest set of states x for which one can state
@ prior? that (13) is a valid solution of (92).* In general (9a) has
solutions different from (13) which are valid in a certain region N.
For x in &, the optimal control is again unsaturated, i.e., Je~s-
{VV(x), §)| <1, but ¢%(x) is & nonlinear function ¢y(x) of the
state x. The possible existence of N was apparently overlooked
in {1-4]. Failure to include the nonlinear regime, when it exists,
will lead to the apparent discontinuities in V(x) which were de-
scribed in the last paragraph of [4].

The interior of Lt U N is the set of states x where the optimal
control ¢%(x) is unsaturated ( l¢°(x)| < 1). In the complement
of L U N, which we shall denote by S, the control is saturated;
ie, |e={WV(x), )] > 1 and ¢%(x) = ¢s(x) = 1. In principle,
analytic expressions for ¢y(x) and the boundaries of N and S are
determined by golving (9) in N and § and then applying (11). In
practice this procedure is complicated by the fact that the solution
of (9) does not have the same analytic form throughout ¥ and S.
Some results of applying this procedure to a concrete example are
given later in Example 1. Further research is needed to deter-
mine more practical methods for obtaining, or approximating,
bw(x).

3 The theory of characteristic strips [7] suggesta an alterna-
tive and practical technique for determining the boundaries of N
and S. In this technique the equations of the characteristic strips
of (9) are integrated in reversed time, starting from states on the
boundary of L. For this problem the equations of the charac-
teristic strips are equivalent to Pontryagin's canonical equations
[8] and are

x = Ax + uf
u(t) = sat [c~¥p(t), F)) (20)
p=Qx— A'p
wherep = —VV(x). AtstatesxeL (13)yields

p = —Mx (21)
where M is given by (14). Integration of (20) for ¢t < 0 (with
initial conditions x(0) = x, p(0) = —Mx and x on the boundary

of L) presents no problem in principle, since the “sat’ function is
Lipschitz-continuous. In this way states on the common
boundary of N and S are determined as the values of x(¢) when
c"(p(t), f) = %18

Example 1
As a gpecial case of (1), (2), let
I = Iz (22)
Z=u |u) =1

4 Here the term ' valid"’ means that V(x) satisfies the definition (8).

5 Th_e computation of w9(t), ¢t < 0, also allows one to determine
numerical values of ¥V(x). This information may be useful in com-
paring various suboptimal control laws.
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T
Tt = 3 f (2% + 228 + cun)dt (23)
0

‘The linear control law is found from (14), (15) to be
éu(x) = —c7izy — ¢™H(1 + 2¢)"izy (24)

The set L is the largest subset of the strip |¢,(x)] < 1 which
is invariant for the system

=2
du(x) (= 0)

Thus L is bounded in part by the straight lines ¢,(x) = =1, and
in part by the two trajectories of the syatem (25) which are tan-
gent to these lines, Fig. 1. A trajectory of (25) is tangent to the
line ¢pz(x) = =1 at the state I=x, where

%= [14+¢ —(1+ 24 (26)

The state %=x;, at which a trajectory tangent to ¢ (x) = =1 in-
tersects the opposite boundary ¢;(x) = F1 is determined by in-
tegration of (25) fort < 0, with x(0) = =x,.

The boundaries of N and S are now established by integrating
the canonical equations for ¢ £ 0. The matrix M is found from

(25)

Z»

(14) to be
(1 + 2¢)/ ¢ :]
M = 27
I: c (1 4+ 25)'/’ (27
and the canonical equations (20) become
=z f’x = I
. . (28)
T = sat (c7%p2) P2 = —p + 3

The integration of (28) for ¢ < 0 need be started only from states
x on the linear boundary segments [ —x,, xg] and [x,, —x4].* The
corresponding initial values of p,, p; are given by (21) and (27).
For ¢ = 1, the results, obtained with an analog computer, are
shown in Fig. 2. As an optimal trajectory is traced backward
from L, the state trajectory first enters S, where the control w%(¢)-
= sat [c™%p.(¢)] remains constant at the saturation level =1.
The trajectory then passes through N (the curved strip in Fig. 2),
where %%(¢) varies continuously from 1 to F1; and so on. As
shown in Fig. 2 the set S can be divided into two subsets S
where ¢%(x) = 1. The behavior of p,(¢) and of u%(¢), ¢ < 0, is
illustrated in Fig. 3.

Ag ¢ — 0 the set L reduces to the linear segment z; + z2 = 0,
|z1] = 1, and the boundaries of N approach a common switching
curve. The optimal control then has a bang-bang and a singular
mode, Fig. 4. The general problem (1)-(5) with ¢ = 0 has been
discussed in {5].

The following results (for ¢ = 1) were obtained by analytic
solution of the Hamilton-Jacobi equation. From (9),

V1 oV 1 4
= == = 2 3) — -
w2 (o:,) telEitah =0 s

(29a)
Ia_V«ﬂ+_l+_l( 22 =0 aVZl 29
“om oz, T2 T @ t=0 =0 ’bzz_ (290)

In the set L, the solution of (29a) is given by (13) and (27):
1 _ _
Vilx) = 2 (V3z:? + 2mz + V32 (30)

In the subset S, of S, shown in Fig. 5, (29b) has the solution

Va(x) = (1/30)[ 33 + 15230 + 10m:z* + 1572
+ 5z + 275 + 2/(1 + 2z + =)Y1]. (31)

¢ Integration need not be started from the segments (Lx. =xg)
since these are characteristic curves of (9).



Fig. 1 Construction of set L for Example 1
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It can be verified that the solution (31) satisfies the requirement
that ¥ be continuous on the (L, S;) boundary, defined by zi-
+V3z=1,|n| /3.

The boundary segment between L U N and 8, Fig. 5, is de-
termined by setting d¥(x)/dz: = +1 in (31). The result is

—3 + 3z:2 + 6mizs? 4 3252 4 212t
+ 2m|(1 + 2z + =1 = 0 (32)

If |z;] < /3, the left side of (32) vanishes when z: + V3n=1;
if 22 2 /3, the mode boundary (N, S,) defined by (32) is a
curved segment lying between the parabola 1 + 2z + z* = 0
and the line z; + /37, = 1. The fact that the boundary seg-
ment (N, S;) is not linear shows that the control law in the region
N must be 2 nonlinear function of the state variables.

Example 2
The following example was discussed briefly in {4]. Let
I = X
T = —;m + u lu(t)l <1

(33)
1 T
Ju] = Ef (2 + u?)dt
0

The construction of the L, N, and S boundaries for this
problem proceeds in the same manner as for Example 1 and the
results are shown in Fig. 6. The trajectories in S+(8-) are circu-
lar arcs centered at z; = +1(—1),2: = 0.

Example 3 Optimal Dual-Mode Control

As mentioned earlier in the paper, the set L coincides with the
entire strip |¢.(x)| =< 1 only for special choices of the matrices A
and Q. Expressed geometrically, a necessary condition is that
the hyperplane ¢.(x) = 0 be invariant for the linear system de-
fined by setting u = ¢, in (2). Sufficient conditions can be
simply expressed algebraically when A, f are of canonical form
(7), and in this case we have the following result.

Theorem

Let the eigenvalues of A be cn, . . ., . If (i) Re a, < Oand the
a,, aredistinc, m = 1, ..., n — 1, (ii) a, is real, (iii) Q = {g;al 1o
s0 chosen that qu > 0, Q 18 symmetric positive semidefinite, and

n n
> E @il W —ay, )™t = 0, m=1..,n—1 (34
j=1k=1

then the optimal control law i3
¢%(x) = sat (Pu(x)] (35)
If e, = 0, the origin x = 0 43 reachable from all xo; if a,> Othe

n =

origin is reachable from xo ¢f, and only #f,
po(x0)] <1+ [1 + qulc )"

A proof is given in the Appendix.

Under the conditions of the theorem the optimal control law
is of the very simple “dual-mode’’ form proposed in [1-3].

If n = 1 the conditions hold trivially.

For n 2 2 the condition Re ar,, <0(m =1,...,n — 1) is some-
what restrictive and cannot be relaxed. However, it is always
possible to choose Q such that (iii) is satisfied; for instance,

choose real numbers e, = 1, e, . . ., €, such that
n
Ze,a,,.f‘l=0 m=1..,n—1)
i=1

and put
Gi=L..,n)

If the conditions of the theorem are satisfied, then as ¢ — 0,
the strip |¢.(x)] S 1 reduces to.the (n — 1)-dimensional hyper-
plane ¢;(x) = 0 and the optimal control law becomes

Qs = €€

oy _ fEE B, bulx) < 0 36)
) {o, $ulx) = 0
Here the control ¢°(x) = 0 is singular. This case of optimal

linear switching has been discussed in [5].
As an application of the theorem let

i\ =2
(37)
=zt |ut)] =1
1 T
Ju) = 7 f (z;® + 22 4 cut)dt (38)
0

By (35) the optimal control is
(x) = ~sat [{1 + (1 + ¢}z + 2)] (39)
and the origin is reachable from x = (zi, z;) provided
o + 2] <1 (40)

The results, for ¢ = 1, are shown in Fig. 7.
As ¢ — O the strip L in Fig. 7 reduces to the linez; 4+ z; = 0
and the optimal control law becomes

— 8gn (z1 + ), 0<|m+ =<1
0 = 41
¢%(x) {0, 4+ zm=0 (41)

The results for this case are shown in Fig. 8.

Conclusions

The linear-saturation control law proposed in {1-3] is correct
only for special choices of the problem parameters. Sufficient
conditions are obtained for validity of this law. In general the
optimal control law has three modes; namely, linear, nonlinear,
and saturation. Some aspects of the general case have been
illustrated with an example. A scheme has been proposed for
computing the boundaries of the regions of linear, nonlinear and
saturated optimal control. Further research is needed to deter-
mine explicit expressions or suitable approximations for the non-
linear control law.

The examples suggest some interesting theoretical problema.
One is to obtain a more explicit description of the regions L and
N. Another is to relate the mode boundaries with the switching
surface of time-optimal control.
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APPENDIX

Proof of Theorem, Example 3

1 Letx = x(¢), p = p({) = — VYV (x()) be a characteristic
stripof V,. Weshallpute = 1. Then from (20)

x = Ax + {p, Df
p=Qx — A'p

When A and f are given by (7) the characteristic polynomial of
the system (42) is easily found to be

(42)

n

PA) =30 3 qphi= =Ny
1

1

+ [)v- -3 ak)\"“l] [(—A)" - ak(—)\)""‘:l (43)
1 1
Let the zeros of P(X) be (A;, —Ay), . . ., (A, —A,), where Re A,-
£0,m=1,..,n ActuallyRe X, <0(m =1,...,n),forif
A = v (vreal)
(o) — Z aiv):?
1

P(iv) = +

z |

DD I TAC D )
T 1

é(iv)" — Z a(iv)e? 2> 0, v =0
E 1 l

(Q11> 0, y=10

Hence the optimal linear control law ¢, (x) = {v, x) exists;
and the optimal linear system is

x = Ax + (v, x)f (44)

with eigenvalues A, . . ., A,.
2 It will first be shown that the set L coincides with the strip
Ky, x)| < 1. Equivalently,

(v, %) <0  (or >0) (45)

(4,x) = +1  (or —1) (46)

where x is given by (44).
From (34) and (43)

n—1

P(A) = qu(a, e an—l)-’ 11 ()\ - am)(—')\ s am)
1

+ O~ a)X—) —a)
1

n—1
=A=AM-A=A) I A — an)—A — a,) (47)
1

where
A= —laala] Ha? + qu)/ (48)
and we have used the fact that
@] = e ... a (49)
Thus, from (47)
Am=an m=1..,0—1 (50)
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Since Ay, . . ., A, are the eigenvalues of the sys'stem (44), we have
also

A - EZ (ay + YALE =0, m=1..,n (6
k=1
Hence by (50)
n
e 1=0, m=1..,n—1 (52)
E=1

A simple calculation from (48), (50), and (51) showa that ¢, > 0
implies v, = 0. From (52) we now have the identities

n n—1
A . B N ) ~ R 2y Y s
2.7 = Y. Ay (03)
1 1
and

n n—1

D veaNT = Ay, T A — @) = YA (54)

1 1

where vo=10. Also from (47) and (51)
M D= =T - ad 69
On combining (53)-(55) it now follows that
kil Vi1 + Valae + ¥IAL = X, 2:) YiAET?
and therefore

(56)

1
=
3

Vet + Valar + i) = Ave k
From (56) we have
(v, %) = My, %) (57)

forallxin L. Since A\, <0, (46) implies (45), as was 10 be shown.
3 It will now be shown that

#(x) = sgn{y,x) if [y, 0| z1 (58)

To this end the original optimization problem will be reduced to an
equivalent problem for a system of first order. By (34), (52), and
a slight extension of the results in Section 5 of [5] we can write

n n d
> 3 gpzm + wr=quyi ¥y, x)* + u? — 2 — Vo(x) (59)
/! dt
i=1k=1
where V, i3 a homogeneous quadratic form in zi, . . ., zo_1.  Let
£ = ' m Ny, % (60)

We shall show that £ satisfies a first-order differential equation.
From (44) and (60)

g~k = (A ) 4 v (61)
By (56}
Vet @Y= A —Yadve  k=1...,n
hence
Ay = (A~ 1)
Thus (61) can be written
E= O — 7+ o (62)
It is seen now that the original problem is equivalent 1o that of

minimizing

1 T
Ju] = - f (82 + ut)dt (63)
2 Jo



NASA-Langley, 1967 —— 19

subject to (62) and the condition §(T') = 0. Since (62)1is of first
order this problem is easily solved. The result is

#(x) = sat [0, x)] (64)
where
— — — ] —202 11/2
g A = {(ve = A+ quni™™yi] (65)
7"
It remains to check that § = 1. From (55)
n—1
Gt Ya=At Y a,
1
a, =trA =3 a,,
1
Y = Au -, (66)
Also, from (53)
Y= (="Moo
or
T? = Y, "% (67)

Substitution of (48), (66), and (67) into (65) gives the desired
result.

The second statement of the theorem can be verified easily from
(62) and (66). This completes the proof.
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